ââtâ§ââ¥â¡ âârtâ€âââ¡ ââŠââ¥â âââs â â â£râŠââ¡â ââ¡âârâtâ¡ â¢âŠr âârtâ€âââ¡ ââŠââ¥â âââs â â â£râŠââ¡â ââ£âââ¡â¥ââ¡ â¢âŠr âârtâ€âââ¡ ââŠââ¥â âââs ââ¡â¡âŠâ¥â âârtâ€âââ¡ ââŠââ¥â âââs ââŠâ¥ââ§âsââŠâ¥ ✠⎠âºâ·
âââ¡ââŠâââ§â¡ ââ§âŠââŠâââ£â€â¡rs â¢râŠâ ââ§âŠââŠâââ£â€â¡rsâŽPâ¡râ âtâtââŠâ¥s ââ§âŠââŠâââ£â€â¡r ââsâ¡ââ³ â£Pâ¡râ âtâtââŠâ¥ ââsâ¡ââ³â£ ᅵ ᅵ E E P E ⟠⎠âºâ·
âââ¡ââŠâââ§â¡ ââ§âŠââŠâââ£â€â¡rs â¢râŠâ ââ§âŠââŠâââ£â€â¡rs ⢠LRW 1 ââ¥â LRW 2 ââ¡ â²âsâŠâŠâ â¡t ââ§â³ â¬â²ââ²âµâ·âª â¿ t h ( t ) h ( t ) k k k m c m c E E E ⢠h âs â³âââ²ââ¥âââ¡rsââ§ â€âs†⢠ââ³â£â³â± h ( t ) = h â t â¢âŠr n â²âât ââŠâ¡â¡â h â¶âµ ⎠âºâ·
â¯sâ¡â â⥠ââââ· ââ¥â â³ââ ââ¡â¥â¡rââ§ââ¢â¡â â âsâŠââ¥â£â¿ ââ€ââŠrâââŠrtâ¡ ââ¥â âârâŠâr â¬âââµâ»âª â¿ â¢âŠr â²âââ ârââ¡ ââŠââ¡s ââsâ¡â â⥠ââââ¶ ââ¥â ââââžâ® âââ¡ââŠâââ§â¡ ââ§âŠââŠâââ£â€â¡rs â¢râŠâ ââ§âŠââŠâââ£â€â¡rs ⢠XE ââ¥â XEX ââ¡ ââŠâ£ââââ¡ â¬ââŠâ£âµâ¹âª â¿ 2 α 3 β 7 γ E k ( N ) 2 α 3 β 7 γ E k ( N ) 2 α 3 β 7 γ E k ( N ) k k m c m c E E ⢠( α, β, γ, N ) âs tââ¡â⊠âsââ â£â§âââ¡ââ® â¶â¶ ⎠âºâ·
ââ¡â¥â¡rââ§ââ¢â¡â â âsâŠââ¥â£â¿ ââ€ââŠrâââŠrtâ¡ ââ¥â âârâŠâr â¬âââµâ»âª â¿ â¢âŠr â²âââ ârââ¡ ââŠââ¡s ââsâ¡â â⥠ââââ¶ ââ¥â ââââžâ® âââ¡ââŠâââ§â¡ ââ§âŠââŠâââ£â€â¡rs â¢râŠâ ââ§âŠââŠâââ£â€â¡rs ⢠XE ââ¥â XEX ââ¡ ââŠâ£ââââ¡ â¬ââŠâ£âµâ¹âª â¿ 2 α 3 β 7 γ E k ( N ) 2 α 3 β 7 γ E k ( N ) 2 α 3 β 7 γ E k ( N ) k k m c m c E E ⢠( α, β, γ, N ) âs tââ¡â⊠âsââ â£â§âââ¡â⮠⢠â¯sâ¡â â⥠ââââ· ââ¥â â³ââ â¶â¶ ⎠âºâ·
â³âââ¿ ââ ââ â£â§â¡â¿ â³ââ³ â⥠ââââ· ââ¥â â³ââ ââââ·â¿ A 1 A 2 A a â M i M 1 M 2 M d E N, A 1 Ë E N, A 2 Ë E N, A a Ë E N, M â Ë E N, M 1 Ë E N, M 2 Ë E N, M d Ë k k k k k k k C 1 C 2 C d T â¶â· ⎠âºâ·
â³âââ¿ ââ ââ â£â§â¡â¿ â³ââ³ â⥠ââââ· ââ¥â â³ââ ââââ·â¿ A 1 A 2 A a â M i M 1 M 2 M d 2 2 3 2 L 2 a 3 2 L 2 d 3 L 2 2 L 2 d L 2 · 3 2 L 2 L E k E k E k E k E k E k E k 2 2 L 2 d L 2 L C 1 C 2 C d L = E K ( N ) T â¶â· ⎠âºâ·
â³âââ¿ ââ ââ â£â§â¡â¿ â³ââ³ â⥠ââââ· ââ¥â â³ââ ââââ·â¿ A 1 A 2 A a â M i M 1 M 2 M d 2 2 3 2 L 2 a 3 2 L 2 d 3 L 2 2 L 2 d L 2 · 3 2 L 2 L E k E k E k E k E k E k E k 2 2 L 2 d L 2 L C 1 C 2 C d L = E K ( N ) T â¶â· ⎠âºâ·
â³âââ¿ ââ ââ â£â§â¡â¿ â³ââ³ â⥠ââââ· ââ¥â â³ââ ââââ·â¿ A 1 A 2 A a â M i M 1 M 2 M d 2 2 3 2 L 2 a 3 2 L 2 d 3 L 2 2 L 2 d L 2 · 3 2 L 2 L E k E k E k E k E k E k E k 2 2 L 2 d L 2 L C 1 C 2 C d L = E K ( N ) T â¶â· ⎠âºâ·
â³âââ¿ ââ ââ â£â§â¡â¿ â³ââ³ â⥠ââââ· ââ¥â â³ââ ââââ·â¿ A 1 A 2 A a â M i M 1 M 2 M d 2 2 3 2 L 2 a 3 2 L 2 d 3 L 2 2 L 2 d L 2 · 3 2 L 2 L E k E k E k E k E k E k E k 2 2 L 2 d L 2 L C 1 C 2 C d L = E K ( N ) T â¶â· ⎠âºâ·
â³âââ¿ ââ ââ â£â§â¡â¿ â³ââ³ â⥠ââââ· ââ¥â â³ââ ââââ·â¿ A 1 A 2 A a â M i M 1 M 2 M d 2 2 3 2 L 2 a 3 2 L 2 d 3 L 2 2 L 2 d L 2 · 3 2 L 2 L E k E k E k E k E k E k E k 2 2 L 2 d L 2 L C 1 C 2 C d L = E K ( N ) T â¶â· ⎠âºâ·
ââ ââ â£â§â¡â¿ â³ââ³ â⥠ââââ· ââ¥â â³ââ ââââ·â¿ A 1 A 2 A a â M i M 1 M 2 M d 2 2 3 2 L 2 a 3 2 L 2 d 3 L 2 2 L 2 d L 2 · 3 2 L 2 L E k E k E k E k E k E k E k 2 2 L 2 d L 2 L C 1 C 2 C d L = E K ( N ) T â³âââ¿ M 1 M 2 M d E i , 1 E i , 2 Ë E i , d Ë Ë k k k C 1 C 2 C d â¶â· ⎠âºâ·
ââ ââ â£â§â¡â¿ â³ââ³ â⥠ââââ· ââ¥â â³ââ ââââ·â¿ A 1 A 2 A a â M i M 1 M 2 M d 2 2 3 2 L 2 a 3 2 L 2 d 3 L 2 2 L 2 d L 2 · 3 2 L 2 L E k E k E k E k E k E k E k 2 2 L 2 d L 2 L C 1 C 2 C d L = E K ( N ) T â³âââ¿ M 1 M 2 M d 2 2 L 2 d L 2 L E k E k E k 2 2 L 2 d L 2 L L = E K ( i ) C 1 C 2 C d â¶â· ⎠âºâ·
ââ ââ â£â§â¡â¿ â³ââ³ â⥠ââââ· ââ¥â â³ââ ââââ·â¿ A 1 A 2 A a â M i M 1 M 2 M d 2 2 3 2 L 2 a 3 2 L 2 d 3 L 2 2 L 2 d L 2 · 3 2 L 2 L E k E k E k E k E k E k E k 2 2 L 2 d L 2 L C 1 C 2 C d L = E K ( N ) T â³âââ¿ M 1 M 2 M d 2 2 L 2 d L 2 L E k E k E k 2 2 L 2 d L 2 L L = E K ( i ) C 1 C 2 C d â¶â· ⎠âºâ·
ââ¡â¥â¡rââ§ââ¢â¡â â âsâŠââ¥â£â¿ ââ€ââŠrâââŠrtâ¡ ââ¥â âârâŠâr â¬âââµâ»âª â¿ â¢âŠr â²âââ ârââ¡ ââŠââ¡s ââsâ¡â â⥠ââââ¶ ââ¥â ââââžâ® âââ¡ââŠâââ§â¡ ââ§âŠââŠâââ£â€â¡rs â¢râŠâ ââ§âŠââŠâââ£â€â¡rs ⢠XE ââ¥â XEX ââ¡ ââŠâ£ââââ¡ â¬ââŠâ£âµâ¹âª â¿ 2 α 3 β 7 γ E k ( N ) 2 α 3 β 7 γ E k ( N ) 2 α 3 β 7 γ E k ( N ) k k m c m c E E ⢠( α, β, γ, N ) âs tââ¡â⊠âsââ â£â§âââ¡â⮠⢠â¯sâ¡â â⥠ââââ· ââ¥â â³ââ â¶âž ⎠âºâ·
âââ¡ââŠâââ§â¡ ââ§âŠââŠâââ£â€â¡rs â¢râŠâ ââ§âŠââŠâââ£â€â¡rs ⢠XE ââ¥â XEX ââ¡ ââŠâ£ââââ¡ â¬ââŠâ£âµâ¹âª â¿ 2 α 3 β 7 γ E k ( N ) 2 α 3 β 7 γ E k ( N ) 2 α 3 β 7 γ E k ( N ) k k m c m c E E ⢠( α, β, γ, N ) âs tââ¡â⊠âsââ â£â§âââ¡â⮠⢠â¯sâ¡â â⥠ââââ· ââ¥â â³ââ ⢠ââ¡â¥â¡rââ§ââ¢â¡â â âsâŠââ¥â£â¿ ⢠ââ€ââŠrâââŠrtâ¡ ââ¥â âârâŠâr â¬âââµâ»âª â¿ Ï Î± ( E k ( N )) â¢âŠr â²âââ Ï â¢ ârââ¡ ââŠââ¡s ââsâ¡â â⥠ââââ¶ ââ¥â ââââžâ® â¶âž ⎠âºâ·
âââ¡ââŠâââ§â¡ ââ§âŠââŠâââ£â€â¡rs â¢râŠâ Pâ¡râ âtâtââŠâ¥s ⢠âŒââ¥ââ§â£â€â¡râ¬s TEM â¬ââââ°â¶â¹âª â¿ 2 α 3 β 7 γ ( k ᅵ N â P ( k ᅵ N )) P m c ⢠( α, β, γ, N ) âs tââ¡â⊠âsââ â£â§âââ¡ââ® â¶â¹ ⎠âºâ·
âââ¡ââŠâââ§â¡ ââ§âŠââŠâââ£â€â¡rs â¢râŠâ Pâ¡râ âtâtââŠâ¥s ⢠PrÞst â¬ââ²â²â°â¶â¹âª âsâ¡s â³âââ³â® âât†âââ¡â¥â²âŒââ¥sâŠârâ¿ 2 α 3 β 7 γ E k (0) 2 α 3 β 7 γ E k (0) k m c E âât†E k ( m ) = P ( m â k ) â k â¶âº ⎠âºâ·
âââ¡ââŠâââ§â¡ ââ§âŠââŠâââ£â€â¡rs â¢râŠâ Pâ¡râ âtâtââŠâ¥s ⢠PrÞst â¬ââ²â²â°â¶â¹âª âsâ¡s â³âââ³â® âât†âââ¡â¥â²âŒââ¥sâŠâr⿠  2 α 3 β 7 γ E k (0) 2 α 3 β 7 γ E k (0)    (2 α 3 β 7 γ â 1) k â 2 α 3 β 7 γ P ( k )  k     m c E    m P c       âât†E k ( m ) = P ( m â k ) â k â¶âº ⎠âºâ·
ââ¡âŠâ â¡s â± âââ© â± ââââ± ââââââ± âŒââ¥ââ§â£â€â¡r â± ââŠâ§tâ⊠ⱠââPâ â± ââ²â â â± âââ¡â¡ââ± PrÞst ââ âââ¯â± âŒârââ§â¡â± âââ â± ââŒâ â± âââââ⌠âââ â± Pâââ â± ââââ²â² â£â§ââ⥠â ârst râŠââ¥ââ± ââŠâ§â â sâ¡ââŠâ¥â râŠââ¥â âââ¡ââŠâââ§â¡ ââ§âŠââŠâââ£â€â¡rs â⥠ââââââ 2 α 3 β 7 γ E k ( N ) 2 α 3 β 7 γ E k ( N ) 2 α 3 β 7 γ ( k ᅵ N â P ( k ᅵ N )) k k ᅵ m c E m c m P c E t ââ¡ââââtâ¡â â³ââŽâ³ââ³â²ââ¥sâ£ârâ¡â âââŒâ²ââ¥sâ£ârâ¡â â¶â» ⎠âºâ·
âââ¡ââŠâââ§â¡ ââ§âŠââŠâââ£â€â¡rs â⥠ââââââ 2 α 3 β 7 γ E k ( N ) 2 α 3 β 7 γ E k ( N ) 2 α 3 β 7 γ ( k ᅵ N â P ( k ᅵ N )) k k ᅵ m c E m c m P c E t ââ¡ââââtâ¡â â³ââŽâ³ââ³â²ââ¥sâ£ârâ¡â âââŒâ²ââ¥sâ£ârâ¡â ââ¡âŠâ â¡s â± âââ© â± ââââ± ââââââ± âŒââ¥ââ§â£â€â¡r â± ââŠâ§tâ⊠ⱠââPâ â± ââ²â â â± âââ¡â¡ââ± PrÞst ââ âââ¯â± âŒârââ§â¡â± âââ â± ââŒâ â± âââââ⌠âââ â± Pâââ â± ââââ²â² â£â§ââ⥠â ârst râŠââ¥ââ± ââŠâ§â â sâ¡ââŠâ¥â râŠââ¥â â¶â» ⎠âºâ·
ââtâ§ââ¥â¡ âârtâ€âââ¡ ââŠââ¥â âââs â â â£râŠââ¡â ââ¡âârâtâ¡ â¢âŠr âârtâ€âââ¡ ââŠââ¥â âââs â â â£râŠââ¡â ââ£âââ¡â¥ââ¡ â¢âŠr âârtâ€âââ¡ ââŠââ¥â âââs ââ¡â¡âŠâ¥â âârtâ€âââ¡ ââŠââ¥â âââs ââŠâ¥ââ§âsââŠâ¥ â¶âŒ ⎠âºâ·
â¬âŒâ¡â¥â¶âºâ⪠Ⱡâ£â¡â¥â¡rââ§ââ¢âtââŠâ¥ âŠâ¢ tâ€âs âââ¡ââŠâââ§â¡ ââ§âŠââŠâââ£â€â¡rs â⥠ââââââ k 2 α 3 β 7 γ E k ( N ) 2 α 3 β 7 γ E k ( N ) 2 α 3 β 7 γ ( k ᅵ N â P ( k ᅵ N )) k ᅵ m c E P m c m c E t ââ¡ââââtâ¡â â³ââŽâ³ââ³â²ââ¥sâ£ârâ¡â âââŒâ²ââ¥sâ£ârâ¡â ââ¡âŠâ â¡s â± âââ© â± ââââ± ââââââ± âŒââ¥ââ§â£â€â¡r â± ââŠâ§tâ⊠ⱠââPâ â± ââ²â â â± âââ¡â¡ââ± PrÞst ââ âââ¯â± âŒârââ§â¡â± âââ â± ââŒâ â± âââââ⌠âââ â± Pâââ â± ââââ²â² â£â§ââ⥠â ârst râŠââ¥ââ± ââŠâ§â â sâ¡ââŠâ¥â râŠââ¥â â¶âœ ⎠âºâ·
âââ¡ââŠâââ§â¡ ââ§âŠââŠâââ£â€â¡rs â⥠ââââââ k 2 α 3 β 7 γ E k ( N ) 2 α 3 β 7 γ E k ( N ) 2 α 3 β 7 γ ( k ᅵ N â P ( k ᅵ N )) k ᅵ m c E P m c m c E t ââ¡ââââtâ¡â â³ââŽâ³ââ³â²ââ¥sâ£ârâ¡â âââŒâ²ââ¥sâ£ârâ¡â ââ¡âŠâ â¡s â± âââ© â± ââââ± ââââââ± âŒââ¥ââ§â£â€â¡r â± ââŠâ§tâ⊠ⱠââPâ â± ââ²â â â± âââ¡â¡ââ± PrÞst ââ âââ¯â± âŒârââ§â¡â± âââ â± ââŒâ â± â âââââ⌠âââ â± Pâââ â± ââââ²â² â â XPX â¬âŒâ¡â¥â¶âºâ⪠Ⱡâ£â¡â¥â¡rââ§ââ¢âtââŠâ¥ âŠâ¢ tâ€âs â£â§ââ⥠â ârst râŠââ¥ââ± ââŠâ§â â sâ¡ââŠâ¥â râŠââ¥â â¶âœ ⎠âºâ·
â¶ ââtââ£âââ ââ¥sâ¡âârâ¡ â· âââŠrâ ââ§â sââ¥â£â§â¡â²âŠâ¡â¡ sâ¡âârâ¡ âž ââtrâŠâ¥â£â râ¡â§âtâ¡ââ²âŠâ¡â¡ sâ¡âârâ¡ ââ¡âârâtâ¡ âŠâ¢ strâŠâ¥â£â§â¡ ââ¡â£â¡â¥âs âŠâ¥ ââ€âŠâââ¡ âŠâ¢ â³Pâ³ t 11 k â t 12 P ( k ) t 21 k â t 22 P ( k ) P m c âââ¡â⊠ââ¡t ⢠( t 11 , t 12 , t 21 , t 22 ) â¢râŠâ sâŠâ â¡ tââ¡â⊠sâ¡t T â ( { 0 , 1 } n ) 4 ⢠T ââ⥠âstââ§â§â® ââ¡ ââ¥â¡ sâ¡t â¶âŸ ⎠âºâ·
â¶ ââtââ£âââ ââ¥sâ¡âârâ¡ â· âââŠrâ ââ§â sââ¥â£â§â¡â²âŠâ¡â¡ sâ¡âârâ¡ âž ââtrâŠâ¥â£â râ¡â§âtâ¡ââ²âŠâ¡â¡ sâ¡âârâ¡ â³Pâ³ t 11 k â t 12 P ( k ) t 21 k â t 22 P ( k ) P m c âââ¡â⊠ââ¡t ⢠( t 11 , t 12 , t 21 , t 22 ) â¢râŠâ sâŠâ â¡ tââ¡â⊠sâ¡t T â ( { 0 , 1 } n ) 4 ⢠T ââ⥠âstââ§â§â® ââ¡ ââ¥â¡ sâ¡t ⢠ââ¡âârâtâ¡ âŠâ¢ XPX strâŠâ¥â£â§â¡ ââ¡â£â¡â¥âs âŠâ¥ ââ€âŠâââ¡ âŠâ¢ T â¶âŸ ⎠âºâ·
â· âââŠrâ ââ§â sââ¥â£â§â¡â²âŠâ¡â¡ sâ¡âârâ¡ âž ââtrâŠâ¥â£â râ¡â§âtâ¡ââ²âŠâ¡â¡ sâ¡âârâ¡ â³Pâ³ t 11 k â t 12 P ( k ) t 21 k â t 22 P ( k ) P m c âââ¡â⊠ââ¡t ⢠( t 11 , t 12 , t 21 , t 22 ) â¢râŠâ sâŠâ â¡ tââ¡â⊠sâ¡t T â ( { 0 , 1 } n ) 4 ⢠T ââ⥠âstââ§â§â® ââ¡ ââ¥â¡ sâ¡t ⢠ââ¡âârâtâ¡ âŠâ¢ XPX strâŠâ¥â£â§â¡ ââ¡â£â¡â¥âs âŠâ¥ ââ€âŠâââ¡ âŠâ¢ T â¶ ââtââ£âââ T â â ââ¥sâ¡âârâ¡ â¶âŸ ⎠âºâ·
âž ââtrâŠâ¥â£â râ¡â§âtâ¡ââ²âŠâ¡â¡ sâ¡âârâ¡ â³Pâ³ t 11 k â t 12 P ( k ) t 21 k â t 22 P ( k ) P m c âââ¡â⊠ââ¡t ⢠( t 11 , t 12 , t 21 , t 22 ) â¢râŠâ sâŠâ â¡ tââ¡â⊠sâ¡t T â ( { 0 , 1 } n ) 4 ⢠T ââ⥠âstââ§â§â® ââ¡ ââ¥â¡ sâ¡t ⢠ââ¡âârâtâ¡ âŠâ¢ XPX strâŠâ¥â£â§â¡ ââ¡â£â¡â¥âs âŠâ¥ ââ€âŠâââ¡ âŠâ¢ T â¶ ââtââ£âââ T â â ââ¥sâ¡âârâ¡ â· âââŠrâ ââ§â T â â sââ¥â£â§â¡â²âŠâ¡â¡ sâ¡âârâ¡ â¶âŸ ⎠âºâ·
â³Pâ³ t 11 k â t 12 P ( k ) t 21 k â t 22 P ( k ) P m c âââ¡â⊠ââ¡t ⢠( t 11 , t 12 , t 21 , t 22 ) â¢râŠâ sâŠâ â¡ tââ¡â⊠sâ¡t T â ( { 0 , 1 } n ) 4 ⢠T ââ⥠âstââ§â§â® ââ¡ ââ¥â¡ sâ¡t ⢠ââ¡âârâtâ¡ âŠâ¢ XPX strâŠâ¥â£â§â¡ ââ¡â£â¡â¥âs âŠâ¥ ââ€âŠâââ¡ âŠâ¢ T â¶ ââtââ£âââ T â â ââ¥sâ¡âârâ¡ â· âââŠrâ ââ§â T â â sââ¥â£â§â¡â²âŠâ¡â¡ sâ¡âârâ¡ âž ââtrâŠâ¥â£â T â â râ¡â§âtâ¡ââ²âŠâ¡â¡ sâ¡âârâ¡ â¶âŸ ⎠âºâ·
â ⢠âs ââ¥âââ§âââ± tâ€â¡â¥ âs ââ¥sâ¡âârâ¡ ââ±ââ§âââ âââ¡â⊠ââ¡ts ââ¡ââ€â¥ââââ§ ââ¡ââ¥âtââŠâ¥ t⊠â¡â§ââ ââ¥âtâ¡ trâââââ§ ââsâ¡s â³Pâ³â¿ âtââ£ââ âââ¡ââŠs t 11 k â t 12 P ( k ) t 21 k â t 22 P ( k ) P m c â·âµ ⎠âºâ·
â ⢠âs ââ¥âââ§âââ± tâ€â¡â¥ âs ââ¥sâ¡âârâ¡ ââ±ââ§âââ âââ¡â⊠ââ¡ts ââ¡ââ€â¥ââââ§ ââ¡ââ¥âtââŠâ¥ t⊠â¡â§ââ ââ¥âtâ¡ trâââââ§ ââsâ¡s â³Pâ³â¿ âtââ£ââ âââ¡ââŠs 0 k â 0 P ( k ) 0 k â 0 P ( k ) P m (0 , 0 , 0 , 0) â T â·âµ ⎠âºâ·
â ⢠âs ââ¥âââ§âââ± tâ€â¡â¥ âs ââ¥sâ¡âârâ¡ ââ±ââ§âââ âââ¡â⊠ââ¡ts ââ¡ââ€â¥ââââ§ ââ¡ââ¥âtââŠâ¥ t⊠â¡â§ââ ââ¥âtâ¡ trâââââ§ ââsâ¡s â³Pâ³â¿ âtââ£ââ âââ¡ââŠs 0 k â 0 P ( k ) 0 k â 0 P ( k ) P P ( m ) m (0 , 0 , 0 , 0) â T = â XPX k ((0 , 0 , 0 , 0) , m ) = P ( m ) â·âµ ⎠âºâ·
â ⢠âs ââ¥âââ§âââ± tâ€â¡â¥ âs ââ¥sâ¡âârâ¡ ââ±ââ§âââ âââ¡â⊠ââ¡ts ââ¡ââ€â¥ââââ§ ââ¡ââ¥âtââŠâ¥ t⊠â¡â§ââ ââ¥âtâ¡ trâââââ§ ââsâ¡s â³Pâ³â¿ âtââ£ââ âââ¡ââŠs 1 k â 0 P ( k ) 1 k â 1 P ( k ) 0 P k (0 , 0 , 0 , 0) â T = â XPX k ((0 , 0 , 0 , 0) , m ) = P ( m ) (1 , 0 , 1 , 1) â T = â XPX k ((1 , 0 , 1 , 1) , 0) = k â·âµ ⎠âºâ·
â ⢠âs ââ¥âââ§âââ± tâ€â¡â¥ âs ââ¥sâ¡âârâ¡ ââ±ââ§âââ âââ¡â⊠ââ¡ts ââ¡ââ€â¥ââââ§ ââ¡ââ¥âtââŠâ¥ t⊠â¡â§ââ ââ¥âtâ¡ trâââââ§ ââsâ¡s â³Pâ³â¿ âtââ£ââ âââ¡ââŠs 1 k â 0 P ( k ) 0 k â 2 P ( k ) 0 P 3 P ( k ) (0 , 0 , 0 , 0) â T = â XPX k ((0 , 0 , 0 , 0) , m ) = P ( m ) (1 , 0 , 1 , 1) â T = â XPX k ((1 , 0 , 1 , 1) , 0) = k (1 , 0 , 0 , 2) â T = â XPX k ((1 , 0 , 0 , 2) , 0) = 3 P ( k ) â·âµ ⎠âºâ·
â ⢠âs ââ¥âââ§âââ± tâ€â¡â¥ âs ââ¥sâ¡âârâ¡ ââ±ââ§âââ âââ¡â⊠ââ¡ts ââ¡ââ€â¥ââââ§ ââ¡ââ¥âtââŠâ¥ t⊠â¡â§ââ ââ¥âtâ¡ trâââââ§ ââsâ¡s â³Pâ³â¿ âtââ£ââ âââ¡ââŠs 1 k â 0 P ( k ) 0 k â 2 P ( k ) 0 P 3 P ( k ) (0 , 0 , 0 , 0) â T = â XPX k ((0 , 0 , 0 , 0) , m ) = P ( m ) (1 , 0 , 1 , 1) â T = â XPX k ((1 , 0 , 1 , 1) , 0) = k (1 , 0 , 0 , 2) â T = â XPX k ((1 , 0 , 0 , 2) , 0) = 3 P ( k ) · · · · · · · · · â·âµ ⎠âºâ·
â ⢠âs ââ¥âââ§âââ± tâ€â¡â¥ âs ââ¥sâ¡âârâ¡ â³Pâ³â¿ âtââ£ââ âââ¡ââŠs 1 k â 0 P ( k ) 0 k â 2 P ( k ) 0 P 3 P ( k ) (0 , 0 , 0 , 0) â T = â XPX k ((0 , 0 , 0 , 0) , m ) = P ( m ) (1 , 0 , 1 , 1) â T = â XPX k ((1 , 0 , 1 , 1) , 0) = k (1 , 0 , 0 , 2) â T = â XPX k ((1 , 0 , 0 , 2) , 0) = 3 P ( k ) · · · · · · · · · ââ±ââ§âââ âââ¡â⊠ââ¡ts ⢠ââ¡ââ€â¥ââââ§ ââ¡ââ¥âtââŠâ¥ t⊠â¡â§ââ ââ¥âtâ¡ trâââââ§ ââsâ¡s â·âµ ⎠âºâ·
â³Pâ³â¿ âtââ£ââ âââ¡ââŠs 1 k â 0 P ( k ) 0 k â 2 P ( k ) 0 P 3 P ( k ) (0 , 0 , 0 , 0) â T = â XPX k ((0 , 0 , 0 , 0) , m ) = P ( m ) (1 , 0 , 1 , 1) â T = â XPX k ((1 , 0 , 1 , 1) , 0) = k (1 , 0 , 0 , 2) â T = â XPX k ((1 , 0 , 0 , 2) , 0) = 3 P ( k ) · · · · · · · · · ââ±ââ§âââ âââ¡â⊠ââ¡ts ⢠ââ¡ââ€â¥ââââ§ ââ¡ââ¥âtââŠâ¥ t⊠â¡â§ââ ââ¥âtâ¡ trâââââ§ ââsâ¡s ⢠â ⢠T âs ââ¥âââ§âââ± tâ€â¡â¥ XPX âs ââ¥sâ¡âârâ¡ â·âµ ⎠âºâ·
â⢠âs âââ§âââ± ââ¥â â¢âŠr ââ§â§ tââ¡ââŠsâ¿ sâ¡âârâtâ¡ ââ¥â â²râŠâ²ââPâP â²râŠâ²ââPâP â²ââ¡â§âtâ¡ââ²ââ¡â¡ ââ¡âârâtâ¡ ââââ â£â§âââ¡ââ® ââ⥠ââ¥â¢ââ¡â¥ââ¡ âŠâ¡â¡â¿ â²ââ¡â§âtâ¡ââ²ââ¡â¡ ââ¡âârâtâ¡ ââââ â£â§âââ¡ââ® ââ⥠ââ¥â¢ââ¡â¥ââ¡ âŠâ¡â¡â¿ âŠr ââŠtâ¡â¿ â âsâŠââ¥â£s â⥠ârâ¡ â³Pâ³â¿ ââŠrâ ââ§ ââ¥â âtrâŠâ¥â£ âââ¡ââŠs âââ¥â£â§â¡â²ââ¡â¡ ââ¡âârât⡠⢠â ⢠T âs âââ§âââ± tâ€â¡â¥ XPX âs ââPâP â·â¶ ⎠âºâ·
â⢠âs âââ§âââ± ââ¥â â¢âŠr ââ§â§ tââ¡ââŠsâ¿ sâ¡âârâtâ¡ ââ¥â â²râŠâ²ââPâP â²râŠâ²ââPâP â²ââ¡â§âtâ¡ââ²ââ¡â¡ ââ¡âârâtâ¡ ââââ â£â§âââ¡ââ® ââ⥠ââ¥â¢ââ¡â¥ââ¡ âŠâ¡â¡â¿ âŠr ââŠtâ¡â¿ â âsâŠââ¥â£s â⥠ârâ¡ â³Pâ³â¿ ââŠrâ ââ§ ââ¥â âtrâŠâ¥â£ âââ¡ââŠs âââ¥â£â§â¡â²ââ¡â¡ ââ¡âârât⡠⢠â ⢠T âs âââ§âââ± tâ€â¡â¥ XPX âs ââPâP Ί â â²ââ¡â§âtâ¡ââ²ââ¡â¡ ââ¡âârâtâ¡ ââââ â£â§âââ¡â⮠⢠D ââ⥠ââ¥â¢ââ¡â¥ââ¡ âŠâ¡â¡â¿ k ᅵâ k â ÎŽ â·â¶ ⎠âºâ·
â⢠âs âââ§âââ± ââ¥â â¢âŠr ââ§â§ tââ¡ââŠsâ¿ sâ¡âârâtâ¡ ââ¥â â²râŠâ²ââPâP â²râŠâ²ââPâP â³Pâ³â¿ ââŠrâ ââ§ ââ¥â âtrâŠâ¥â£ âââ¡ââŠs âââ¥â£â§â¡â²ââ¡â¡ ââ¡âârât⡠⢠â ⢠T âs âââ§âââ± tâ€â¡â¥ XPX âs ââPâP Ί â â²ââ¡â§âtâ¡ââ²ââ¡â¡ ââ¡âârâtâ¡ ââââ â£â§âââ¡â⮠⢠D ââ⥠ââ¥â¢ââ¡â¥ââ¡ âŠâ¡â¡â¿ k ᅵâ k â ÎŽ Ί P â â²ââ¡â§âtâ¡ââ²ââ¡â¡ ââ¡âârâtâ¡ ââââ â£â§âââ¡â⮠⢠D ââ⥠ââ¥â¢ââ¡â¥ââ¡ âŠâ¡â¡â¿ k ᅵâ k â ÎŽ âŠr P ( k ) ᅵâ P ( k ) â Ç« ⢠ââŠtâ¡â¿ â âsâŠââ¥â£s â⥠XPX ârâ¡ t i 1 k â t i 2 P ( k ) â·â¶ ⎠âºâ·
â³Pâ³â¿ ââŠrâ ââ§ ââ¥â âtrâŠâ¥â£ âââ¡ââŠs âââ¥â£â§â¡â²ââ¡â¡ ââ¡âârât⡠⢠â ⢠T âs âââ§âââ± tâ€â¡â¥ XPX âs ââPâP Ί â â²ââ¡â§âtâ¡ââ²ââ¡â¡ ââ¡âârâtâ¡ ââââ â£â§âââ¡â⮠⢠D ââ⥠ââ¥â¢ââ¡â¥ââ¡ âŠâ¡â¡â¿ k ᅵâ k â ÎŽ Ί P â â²ââ¡â§âtâ¡ââ²ââ¡â¡ ââ¡âârâtâ¡ ââââ â£â§âââ¡â⮠⢠D ââ⥠ââ¥â¢ââ¡â¥ââ¡ âŠâ¡â¡â¿ k ᅵâ k â ÎŽ âŠr P ( k ) ᅵâ P ( k ) â Ç« ⢠ââŠtâ¡â¿ â âsâŠââ¥â£s â⥠XPX ârâ¡ t i 1 k â t i 2 P ( k ) â⢠T âs âââ§âââ± ââ¥â â¢âŠr ââ§â§ tââ¡ââŠsâ¿ sâ¡âârâtâ¡ t 12 , t 22 ᅵ = 0 ââ¥â ( t 21 , t 22 ) ᅵ = (0 , 1) Ί â â²râŠâ²ââPâP t 11 , t 12 , t 21 , t 22 ᅵ = 0 Ί P â â²râŠâ²ââPâP â·â¶ ⎠âºâ·
âââ¥â£â§â¡â²âŠâ¡â¡ ââPâP sâ¡âârâ¡ âsârâ£râsâ¡ââ® ââ¡â¥â¡rââ§â§â¡â± â⢠Ⱡâs â â¥âŠrâ ââ§ ââ§âŠââŠâââ£â€â¡r â³Pâ³ ââŠââ¡rs âââ¡â¥â²âŒââ¥sâŠâr t 11 k â t 12 P ( k ) t 21 k â t 22 P ( k ) k k â â â P P m c m c â¢âŠr T = { (1 , 0 , 1 , 0) } â·â· ⎠âºâ·
ââ¡â¥â¡rââ§â§â¡â± â⢠Ⱡâs â â¥âŠrâ ââ§ ââ§âŠââŠâââ£â€â¡r â³Pâ³ ââŠââ¡rs âââ¡â¥â²âŒââ¥sâŠâr t 11 k â t 12 P ( k ) t 21 k â t 22 P ( k ) k k â â â P P m c m c â¢âŠr T = { (1 , 0 , 1 , 0) } ⢠âââ¥â£â§â¡â²âŠâ¡â¡ ââPâP sâ¡âârâ¡ âsârâ£râsâ¡ââ® â·â· ⎠âºâ·
â³Pâ³ ââŠââ¡rs âââ¡â¥â²âŒââ¥sâŠâr t 11 k â t 12 P ( k ) t 21 k â t 22 P ( k ) k k â â â P P m c m c â¢âŠr T = { (1 , 0 , 1 , 0) } ⢠âââ¥â£â§â¡â²âŠâ¡â¡ ââPâP sâ¡âârâ¡ âsârâ£râsâ¡â⮠⢠ââ¡â¥â¡rââ§â§â¡â± â⢠|T | = 1 â± XPX âs â â¥âŠrâ ââ§ ââ§âŠââŠâââ£â€â¡r â·â· ⎠âºâ·
â²r⊠ââPâP sâ¡âârâ¡ ââ⢠⮠â³Pâ³ ââŠââ¡rs â³ââ³ â²ât†âââ¡â¥â²âŒââ¥sâŠâr (2 α 3 β 7 γ â 1) k â 2 α 3 β 7 γ P ( k ) t 11 k â t 12 P ( k ) t 21 k â t 22 P ( k ) â â â P P m c m c ᅵ ( 2 α 3 β 7 γ â 1 , 2 α 3 β 7 γ , ᅵ ᅵ ᅵ ᅵ â¢âŠr T = ᅵ ( α, β, γ ) â { XEX â²tââ¡ââŠs } ( 2 α 3 β 7 γ â 1 , 2 α 3 β 7 γ ) ⢠( α, β, γ ) âs â⥠â¢âât tâ€â¡ ârâ¡ââ§â tââ¡â⊠â·âž ⎠âºâ·
â³Pâ³ ââŠââ¡rs â³ââ³ â²ât†âââ¡â¥â²âŒââ¥sâŠâr (2 α 3 β 7 γ â 1) k â 2 α 3 β 7 γ P ( k ) t 11 k â t 12 P ( k ) t 21 k â t 22 P ( k ) â â â P P m c m c ᅵ ( 2 α 3 β 7 γ â 1 , 2 α 3 β 7 γ , ᅵ ᅵ ᅵ ᅵ â¢âŠr T = ᅵ ( α, β, γ ) â { XEX â²tââ¡ââŠs } ( 2 α 3 β 7 γ â 1 , 2 α 3 β 7 γ ) ⢠( α, β, γ ) âs â⥠â¢âât tâ€â¡ ârâ¡ââ§â tââ¡â⊠⢠Ί P â â²r⊠ââPâP sâ¡âârâ¡ ââ⢠2 α 3 β 7 γ ᅵ = 1 â® â·âž ⎠âºâ·
PrÞstâ²ââPâ ââ¡ ââââ⥠â¡t ââ§â³ â¬ââ²â²â°â¶â¹âª â¿ ââPâ ââsâ¡â âŠâ¥ â³ââ³ ââsâ¡â âŠâ¥ âââ¡â¥â²âŒââ¥sâŠâr ââ£â£â§âââtââŠâ¥ âŠâ¢ â³Pâ³ t⊠âââ¿ ââPâ A 1 A 2 A a â 1 A a M 1 M 2 M d M 1 â···â M d 3 3 L 2 · 3 3 L 2 a -2 3 3 L 2 a -1 3 4 L 2 d -1 3 L 2 d -1 3 2 L 3 L 2 · 3 L E k E k E k E k E k E k E k L E k E k E k E k E k L = E K (0) 2 2 L 2 d L 2 d -1 7 L 2 L C 1 C 2 C d T ⢠ââ¡ ââ¥ârâ¡â¡ââ â¡t ââ§â³ â¬âââ²â°â¶â¹âª ⢠â â â£â§âââtâ§â¡ ââsâ¡â âŠâ¥ XEX ââsâ¡â âŠâ¥ âââ â·â¹ ⎠âºâ·
ââ£â£â§âââtââŠâ¥ âŠâ¢ â³Pâ³ t⊠âââ¿ ââPâ A 1 A 2 A a â 1 A a M 1 M 2 M d M 1 â···â M d 3 3 L 2 · 3 3 L 2 a -2 3 3 L 2 a -1 3 4 L 2 d -1 3 L 2 d -1 3 2 L 3 L 2 · 3 L E k E k E k E k E k E k E k L E k E k E k E k E k L = E K (0) 2 2 L 2 d L 2 d -1 7 L 2 L C 1 C 2 C d T ⢠ââ¡ ââ¥ârâ¡â¡ââ â¡t ââ§â³ â¬âââ²â°â¶â¹âª ⢠â â â£â§âââtâ§â¡ ââsâ¡â âŠâ¥ XEX ââsâ¡â âŠâ¥ âââ ⢠PrÞstâ²ââPâ ââ¡ ââââ⥠â¡t ââ§â³ â¬ââ²â²â°â¶â¹âª â¿ ââPâ ââsâ¡â âŠâ¥ â³ââ³ ââsâ¡â âŠâ¥ âââ¡â¥â²âŒââ¥sâŠâr â·â¹ ⎠âºâ·
â³ â³ â²r⊠ⳠⳠs⊠ââ¡â§âtâ¡ââ²ââ¡â¡ ââ¡âârâtâ¡ âŠâ¢ ââPâ ââ£â£râŠââ†â£â¡â¥â¡rââ§ââ¢â¡s â¢âŠr ââ¥â¡ ââ£râŠâŠâ¢ â⥠â¬âŒâ¡â¥â¶âºâ⪠⮠ⳠⳠⳠⳠⳠⳠââPâ â²r⊠â²r⊠ââ£â£â§âââtââŠâ¥ âŠâ¢ â³Pâ³ t⊠âââ¿ ââPâ âââ¥â£â§â¡â²ââ¡â¡ ââ¡âârâtâ¡ âŠâ¢ ââPâ Ï 2 Ï 2 ᅵ ᅵ ᅵ ᅵ O O 2 n 2 n â³ â³ â³ â³ â³ â³ â â â â â â â â â â ââPâ XEX E s⊠s⊠â·âº ⎠âºâ·
â³ â³ s⊠ⳠⳠâ²r⊠ââ£â£â§âââtââŠâ¥ âŠâ¢ â³Pâ³ t⊠âââ¿ ââPâ âââ¥â£â§â¡â²ââ¡â¡ ââ¡âârâtâ¡ âŠâ¢ ââPâ Ï 2 Ï 2 ᅵ ᅵ ᅵ ᅵ O O 2 n 2 n â³ â³ â³ â³ â³ â³ â â â â â â â â â â ââPâ XEX E s⊠s⊠ââ¡â§âtâ¡ââ²ââ¡â¡ ââ¡âârâtâ¡ âŠâ¢ ââPâ ⢠ââ£â£râŠââ†â£â¡â¥â¡rââ§ââ¢â¡s â¢âŠr ââ¥â¡ Ί ââ£râŠâŠâ¢ â⥠â¬âŒâ¡â¥â¶âºâ⪠⮠ᅵ Ï 2 ᅵ ᅵ Ï 2 ᅵ O O 2 n 2 n â³ â³ â³ â³ â³ â³ â â â â â â â â â â ââPâ XEX E Ί â²r⊠Ί â²r⊠â·âº ⎠âºâ·
ââ£â£râŠââ†â£â¡â¥â¡rââ§ââ¢â¡s ââ£râŠâŠâ¢ â⥠â¬âŒâ¡â¥â¶âºâ⪠⮠â²r⊠s⊠ââ¡â§âtâ¡ââ²ââ¡â¡ ââ¡âârâtâ¡ âŠâ¢ PrÞstâ²ââPâ â³ â³ â³ â³ â³ â³ â³ â³ ââPâ â²r⊠â²r⊠â²r⊠ââ£â£â§âââtââŠâ¥ âŠâ¢ â³Pâ³ t⊠âââ¿ PrÞstâ²ââPâ âââ¥â£â§â¡â²ââ¡â¡ ââ¡âârâtâ¡ âŠâ¢ PrÞstâ²ââPâ Ï 2 Ï 2 ᅵ ᅵ ᅵ ᅵ O O 2 n 2 n â³ â³ â³ â³ â³ â³ â³ â³ â â â â â â â â â â ââPâ XEX E P s⊠s⊠â·â» ⎠âºâ·
ââ£â£râŠââ†â£â¡â¥â¡rââ§ââ¢â¡s ââ£râŠâŠâ¢ â⥠â¬âŒâ¡â¥â¶âºâ⪠⮠â²r⊠ââ¡â§âtâ¡ââ²ââ¡â¡ ââ¡âârâtâ¡ âŠâ¢ PrÞstâ²ââPâ â³ â³ â³ â³ â³ â³ â³ â³ ââPâ â²r⊠â²r⊠â²r⊠ââ£â£â§âââtââŠâ¥ âŠâ¢ â³Pâ³ t⊠âââ¿ PrÞstâ²ââPâ âââ¥â£â§â¡â²ââ¡â¡ ââ¡âârâtâ¡ âŠâ¢ PrÞstâ²ââPâ Ï 2 Ï 2 Ï 2 ᅵ ᅵ ᅵ ᅵ ᅵ ᅵ O O O 2 n 2 n 2 n â³ â³ â³ â³ â³ â³ â³ â³ â â â â â â â â â â â â â â â ââPâ XEX E P s⊠s⊠s⊠â·â» ⎠âºâ·
ââ£â£râŠââ†â£â¡â¥â¡rââ§ââ¢â¡s ââ£râŠâŠâ¢ â⥠â¬âŒâ¡â¥â¶âºâ⪠⮠â²r⊠â²r⊠ââ£â£â§âââtââŠâ¥ âŠâ¢ â³Pâ³ t⊠âââ¿ PrÞstâ²ââPâ âââ¥â£â§â¡â²ââ¡â¡ ââ¡âârâtâ¡ âŠâ¢ PrÞstâ²ââPâ Ï 2 Ï 2 Ï 2 ᅵ ᅵ ᅵ ᅵ ᅵ ᅵ O O O 2 n 2 n 2 n â³ â³ â³ â³ â³ â³ â³ â³ â â â â â â â â â â â â â â â ââPâ XEX E P s⊠s⊠s⊠ââ¡â§âtâ¡ââ²ââ¡â¡ ââ¡âârâtâ¡ âŠâ¢ PrÞstâ²ââPâ ᅵ Ï 2 ᅵ ᅵ Ï 2 ᅵ O O 2 n 2 n â³ â³ â³ â³ â³ â³ â³ â³ â â â â â â â â â â ââPâ XEX E P Ί â²r⊠Ί â²r⊠â·â» ⎠âºâ·
ââ£â£râŠââ†â£â¡â¥â¡rââ§ââ¢â¡s ââ£râŠâŠâ¢ â⥠â¬âŒâ¡â¥â¶âºâ⪠⮠â²r⊠ââ£â£â§âââtââŠâ¥ âŠâ¢ â³Pâ³ t⊠âââ¿ PrÞstâ²ââPâ âââ¥â£â§â¡â²ââ¡â¡ ââ¡âârâtâ¡ âŠâ¢ PrÞstâ²ââPâ Ï 2 Ï 2 Ï 2 ᅵ ᅵ ᅵ ᅵ ᅵ ᅵ O O O 2 n 2 n 2 n â³ â³ â³ â³ â³ â³ â³ â³ â â â â â â â â â â â â â â â ââPâ XEX E P s⊠s⊠s⊠ââ¡â§âtâ¡ââ²ââ¡â¡ ââ¡âârâtâ¡ âŠâ¢ PrÞstâ²ââPâ ᅵ Ï 2 ᅵ ᅵ Ï 2 ᅵ ᅵ ᅵ O O ⊠1 2 n 2 n â³ â³ â³ â³ â³ â³ â³ â³ â â â â â â â â â â â â â â â ââPâ XEX E P Ί â²r⊠Ί â²r⊠Ί â²r⊠â·â» ⎠âºâ·
ââ£â£râŠââ†â£â¡â¥â¡rââ§ââ¢â¡s ââ£râŠâŠâ¢ â⥠â¬âŒâ¡â¥â¶âºâ⪠⮠ââ£â£â§âââtââŠâ¥ âŠâ¢ â³Pâ³ t⊠âââ¿ PrÞstâ²ââPâ âââ¥â£â§â¡â²ââ¡â¡ ââ¡âârâtâ¡ âŠâ¢ PrÞstâ²ââPâ Ï 2 Ï 2 Ï 2 ᅵ ᅵ ᅵ ᅵ ᅵ ᅵ O O O 2 n 2 n 2 n â³ â³ â³ â³ â³ â³ â³ â³ â â â â â â â â â â â â â â â ââPâ XEX E P s⊠s⊠s⊠ââ¡â§âtâ¡ââ²ââ¡â¡ ââ¡âârâtâ¡ âŠâ¢ PrÞstâ²ââPâ ᅵ Ï 2 ᅵ ᅵ Ï 2 ᅵ ᅵ ᅵ O O ⊠1 2 n 2 n â³ â³ â³ â³ â³ â³ â³ â³ â â â â â â â â â â â â â â â ââPâ XEX E P Ί â²r⊠Ί â²r⊠Ί â²r⊠ᅵ ᅵ Ï 2 O 2 n Ί P â â²r⊠â·â» ⎠âºâ·
â²r⊠ââsâ¡â âŠâ¥ âât†ⳠⳠⳠⳠⳠⳠâŒââ¥ââ§â£â€â³ â²r⊠ââ£â£â§âââtââŠâ¥ âŠâ¢ â³Pâ³ t⊠âââ¿ âŒââ¥ââ§â£â€â¡r A 1 A 2 A a â 1 A a M 1 M 2 M d â 1 M d 2 L â² 2 2 L â² 2 a -1 L â² 2 L 2 3 L 2 2 d -3 L 2 2 d -1 L P P P P P P P 2 2 L â² 2 a -1 L â² 2 3 L 2 2 d -3 L 2 2 d -1 L 2 L â² 2 L C 1 C 2 C d â 1 C d 2 a -1 3 L â² 2 2 L 2 4 L 2 2 d -2 L L â² = k ᅵ flag ᅵ 0 â P ( k ᅵ flag ᅵ 0) P P P P 2 a -1 3 L â² 2 2 d -2 L 2 2 L 2 4 L L = k ᅵ flag ᅵ N â P ( k ᅵ flag ᅵ N ) 2 2 d -1 3 L ⢠ââ¡ ââsââŠâ â¡t ââ§â³ â¬ââââ°â¶â¹âª P ⢠ââ trâ â¥âŠâ¥ââ¡ N ââŠâ¥ââtâ¡â¥âtâ¡â t⊠k 2 2 d -1 3 L T â·âŒ ⎠âºâ·
â²r⊠ⳠⳠⳠⳠⳠⳠâŒââ¥ââ§â£â€â³ â²r⊠ââ£â£â§âââtââŠâ¥ âŠâ¢ â³Pâ³ t⊠âââ¿ âŒââ¥ââ§â£â€â¡r A 1 A 2 A a â 1 A a M 1 M 2 M d â 1 M d 2 L â² 2 2 L â² 2 a -1 L â² 2 L 2 3 L 2 2 d -3 L 2 2 d -1 L P P P P P P P 2 2 L â² 2 a -1 L â² 2 3 L 2 2 d -3 L 2 2 d -1 L 2 L â² 2 L C 1 C 2 C d â 1 C d 2 a -1 3 L â² 2 2 L 2 4 L 2 2 d -2 L L â² = k ᅵ flag ᅵ 0 â P ( k ᅵ flag ᅵ 0) P P P P 2 a -1 3 L â² 2 2 d -2 L 2 2 L 2 4 L L = k ᅵ flag ᅵ N â P ( k ᅵ flag ᅵ N ) 2 2 d -1 3 L ⢠ââ¡ ââsââŠâ â¡t ââ§â³ â¬ââââ°â¶â¹âª P ⢠ââ trâ â¥âŠâ¥ââ¡ N ââŠâ¥ââtâ¡â¥âtâ¡â t⊠k 2 2 d -1 3 L T ⢠ââsâ¡â âŠâ¥ XPX âât†T = { (2 α 3 β , 2 α 3 β , 2 α 3 β , 2 α 3 β ) } â·âŒ ⎠âºâ·
â²r⊠ââ£â£â§âââtââŠâ¥ âŠâ¢ â³Pâ³ t⊠âââ¿ âŒââ¥ââ§â£â€â¡r A 1 A 2 A a â 1 A a M 1 M 2 M d â 1 M d 2 L â² 2 2 L â² 2 a -1 L â² 2 L 2 3 L 2 2 d -3 L 2 2 d -1 L P P P P P P P 2 2 L â² 2 a -1 L â² 2 3 L 2 2 d -3 L 2 2 d -1 L 2 L â² 2 L C 1 C 2 C d â 1 C d 2 a -1 3 L â² 2 2 L 2 4 L 2 2 d -2 L L â² = k ᅵ flag ᅵ 0 â P ( k ᅵ flag ᅵ 0) P P P P 2 a -1 3 L â² 2 2 d -2 L 2 2 L 2 4 L L = k ᅵ flag ᅵ N â P ( k ᅵ flag ᅵ N ) 2 2 d -1 3 L ⢠ââ¡ ââsââŠâ â¡t ââ§â³ â¬ââââ°â¶â¹âª P ⢠ââ trâ â¥âŠâ¥ââ¡ N ââŠâ¥ââtâ¡â¥âtâ¡â t⊠k 2 2 d -1 3 L T ⢠ââsâ¡â âŠâ¥ XPX âât†T = { (2 α 3 β , 2 α 3 β , 2 α 3 β , 2 α 3 β ) } Ï 2 ᅵ ᅵ O 2 n â³ â³ â³ â³ â³ â³ â â â â â âŒââ¥ââ§â£â€â³ XPX P Ί â²r⊠â·âŒ ⎠âºâ·
ââ£â£â§âââtââŠâ¥ âŠâ¢ â³Pâ³ t⊠âââ¿ âŒââ¥ââ§â£â€â¡r A 1 A 2 A a â 1 A a M 1 M 2 M d â 1 M d 2 L â² 2 2 L â² 2 a -1 L â² 2 L 2 3 L 2 2 d -3 L 2 2 d -1 L P P P P P P P 2 2 L â² 2 a -1 L â² 2 3 L 2 2 d -3 L 2 2 d -1 L 2 L â² 2 L C 1 C 2 C d â 1 C d 2 a -1 3 L â² 2 2 L 2 4 L 2 2 d -2 L L â² = k ᅵ flag ᅵ 0 â P ( k ᅵ flag ᅵ 0) P P P P 2 a -1 3 L â² 2 2 d -2 L 2 2 L 2 4 L L = k ᅵ flag ᅵ N â P ( k ᅵ flag ᅵ N ) 2 2 d -1 3 L ⢠ââ¡ ââsââŠâ â¡t ââ§â³ â¬ââââ°â¶â¹âª P ⢠ââ trâ â¥âŠâ¥ââ¡ N ââŠâ¥ââtâ¡â¥âtâ¡â t⊠k 2 2 d -1 3 L T ⢠ââsâ¡â âŠâ¥ XPX âât†T = { (2 α 3 β , 2 α 3 β , 2 α 3 β , 2 α 3 β ) } Ï 2 Ï 2 ᅵ ᅵ ᅵ ᅵ O O 2 n 2 n â³ â³ â³ â³ â³ â³ â â â â â â â â â â âŒââ¥ââ§â£â€â³ XPX P Ί â²r⊠Ί P â â²r⊠â·âŒ ⎠âºâ·
ââsâ¡â âŠâ¥ âât†ⳠⳠⳠⳠⳠⳠââ€âsâŠâ¡â¡ s⊠s⊠ââ£â£â§âââtââŠâ¥ âŠâ¢ â³Pâ³ t⊠âŒâââ¿ ââ€âsâŠâ¡â¡ k M 1 M 2 M d 2 k 2 k 0 P P P T k M 1 M 2 M d 10 â 4 k 4 k T 0 P P P ⢠ââ¡ âŒâŠââ€â â¡t ââ§â³ â¬âŒâŒâ±â°â¶â¹âª â·âœ ⎠âºâ·
â³ â³ â³ â³ â³ â³ ââ€âsâŠâ¡â¡ s⊠s⊠ââ£â£â§âââtââŠâ¥ âŠâ¢ â³Pâ³ t⊠âŒâââ¿ ââ€âsâŠâ¡â¡ k M 1 M 2 M d 2 k 2 k 0 P P P T k M 1 M 2 M d 10 â 4 k 4 k T 0 P P P ⢠ââ¡ âŒâŠââ€â â¡t ââ§â³ â¬âŒâŒâ±â°â¶â¹âª ⢠ââsâ¡â âŠâ¥ XPX âât†T = { (1 , 0 , 1 , 0) , (3 , 0 , 2 , 0) , (5 , 0 , 4 , 0) } â·âœ ⎠âºâ·
ââ£â£â§âââtââŠâ¥ âŠâ¢ â³Pâ³ t⊠âŒâââ¿ ââ€âsâŠâ¡â¡ k M 1 M 2 M d 2 k 2 k 0 P P P T k M 1 M 2 M d 10 â 4 k 4 k T 0 P P P ⢠ââ¡ âŒâŠââ€â â¡t ââ§â³ â¬âŒâŒâ±â°â¶â¹âª ⢠ââsâ¡â âŠâ¥ XPX âât†T = { (1 , 0 , 1 , 0) , (3 , 0 , 2 , 0) , (5 , 0 , 4 , 0) } ᅵ Ï 2 ᅵ ᅵ Ï 2 ᅵ O O 2 n 2 n â³ â³ â³ â³ â³ â³ â â â â â â â â â â ââ€âsâŠâ¡â¡ P XPX s⊠s⊠â·âœ ⎠âºâ·
â³ â³ â³ â³ â³ â³ ââ€âsâŠâ¡â¡ â²r⊠â²r⊠ââ£â£râŠââ†ââ§s⊠ââ£â£â§ââ¡s t⊠ââ¡â¡â¡â ââ£âŠâ¥â£â¡s ââ£â£â§âââtââŠâ¥ t⊠âŒâââ¿ âââ¥âstâ¡â ââ€âsâŠâ¡â¡ k M 1 M 2 M d 2 k 2 k 0 P P P P T k M 1 M 2 M d 10 â 4 k 4 k T 0 P P P P ⢠ââ trâ P â²âââ§â§ ⢠ââsâ¡â âŠâ¥ XPX âât†T â² = { (0 , 1 , 0 , 1) , (2 , 1 , 2 , 0) , (4 , 1 , 4 , 0) } â·âŸ ⎠âºâ·
ââ£â£râŠââ†ââ§s⊠ââ£â£â§ââ¡s t⊠ââ¡â¡â¡â ââ£âŠâ¥â£â¡s ââ£â£â§âââtââŠâ¥ t⊠âŒâââ¿ âââ¥âstâ¡â ââ€âsâŠâ¡â¡ k M 1 M 2 M d 2 k 2 k 0 P P P P T k M 1 M 2 M d 10 â 4 k 4 k T 0 P P P P ⢠ââ trâ P â²âââ§â§ ⢠ââsâ¡â âŠâ¥ XPX âât†T â² = { (0 , 1 , 0 , 1) , (2 , 1 , 2 , 0) , (4 , 1 , 4 , 0) } ᅵ Ï 2 ᅵ ᅵ Ï 2 ᅵ O O 2 n 2 n â³ â³ â³ â³ â³ â³ â â â â â â â â â â ââ€âsâŠâ¡â¡ P XPX Ί â²r⊠Ί â â²r⊠â·âŸ ⎠âºâ·
ââ£â£â§âââtââŠâ¥ t⊠âŒâââ¿ âââ¥âstâ¡â ââ€âsâŠâ¡â¡ k M 1 M 2 M d 2 k 2 k 0 P P P P T k M 1 M 2 M d 10 â 4 k 4 k T 0 P P P P ⢠ââ trâ P â²âââ§â§ ⢠ââsâ¡â âŠâ¥ XPX âât†T â² = { (0 , 1 , 0 , 1) , (2 , 1 , 2 , 0) , (4 , 1 , 4 , 0) } ᅵ Ï 2 ᅵ ᅵ Ï 2 ᅵ O O 2 n 2 n â³ â³ â³ â³ â³ â³ â â â â â â â â â â ââ€âsâŠâ¡â¡ P XPX Ί â²r⊠Ί â â²r⊠⢠ââ£â£râŠââ†ââ§s⊠ââ£â£â§ââ¡s t⊠ââ¡â¡â¡â ââ£âŠâ¥â£â¡s â·âŸ ⎠âºâ·
ââtâ§ââ¥â¡ âârtâ€âââ¡ ââŠââ¥â âââs â â â£râŠââ¡â ââ¡âârâtâ¡ â¢âŠr âârtâ€âââ¡ ââŠââ¥â âââs â â â£râŠââ¡â ââ£âââ¡â¥ââ¡ â¢âŠr âârtâ€âââ¡ ââŠââ¥â âââs ââ¡â¡âŠâ¥â âârtâ€âââ¡ ââŠââ¥â âââs ââŠâ¥ââ§âsââŠâ¥ âžâµ ⎠âºâ·
âŒâsâŠââ¥â£ ââŠâ âââ¥â¡s âââââ¥tââ£â¡s âŠâ¢â¿ PâŠââ¡rââ¥â£â²â⣠â âsâŠââ¥â£ â²âââ â âsâŠââ¥â£ ââ¡â â âsâŠââ¥â£ âs sââ â£â§â¡râ± ââŠâ¥stââ¥tâ²tââ â¡ âââ¡ ââ¡â¢âââ§tâ®â± â âŠrâ¡ â¡â£âââ¡â¥t âŒâ⌠⢠MEM ââ¡ ârââ¥â£â¡r â¡t ââ§â³ â¬âââŒââ¶âºâª â¿ Ï Î³ 2 âŠ Ï Î² 1 âŠ Ï Î± 0 ⊠P ( N ᅵ k ) P m c â¢ Ï i ârâ¡ ââ â¡â â²âââsâ± ( α, β, γ, N ) âs tââ¡â⊠âsââ â£â§âââ¡ââ® âžâ¶ ⎠âºâ·
ââ¡â â âsâŠââ¥â£ âs sââ â£â§â¡râ± ââŠâ¥stââ¥tâ²tââ â¡ âââ¡ ââ¡â¢âââ§tâ®â± â âŠrâ¡ â¡â£âââ¡â¥t âŒâ⌠⢠MEM ââ¡ ârââ¥â£â¡r â¡t ââ§â³ â¬âââŒââ¶âºâª â¿ Ï Î³ 2 âŠ Ï Î² 1 âŠ Ï Î± 0 ⊠P ( N ᅵ k ) P m c â¢ Ï i ârâ¡ ââ â¡â â²âââsâ± ( α, β, γ, N ) âs tââ¡â⊠âsââ â£â§âââ¡â⮠⢠âŒâsâŠââ¥â£ ââŠâ âââ¥â¡s âââââ¥tââ£â¡s âŠâ¢â¿ ⢠PâŠââ¡rââ¥â£â²â⣠â âsâŠââ¥â£ ⢠â²âââ â âsâŠââ¥â£ âžâ¶ ⎠âºâ·
âŒâ⌠⢠MEM ââ¡ ârââ¥â£â¡r â¡t ââ§â³ â¬âââŒââ¶âºâª â¿ Ï Î³ 2 âŠ Ï Î² 1 âŠ Ï Î± 0 ⊠P ( N ᅵ k ) P m c â¢ Ï i ârâ¡ ââ â¡â â²âââsâ± ( α, β, γ, N ) âs tââ¡â⊠âsââ â£â§âââ¡â⮠⢠âŒâsâŠââ¥â£ ââŠâ âââ¥â¡s âââââ¥tââ£â¡s âŠâ¢â¿ ⢠PâŠââ¡rââ¥â£â²â⣠â âsâŠââ¥â£ ⢠â²âââ â âsâŠââ¥â£ ââ¡â â âsâŠââ¥â£ âs sââ â£â§â¡râ± ââŠâ¥stââ¥tâ²tââ â¡ âââ¡ ââ¡â¢âââ§tâ®â± â âŠrâ¡ â¡â£âââ¡â¥t âžâ¶ ⎠âºâ·
âµâ³âºâº ââ£â âât†râ¡ââââ¡ââ²râŠââ¥â ââ²ââââ·â ââ£â£â§âââtââŠâ¥ âŠâ¢ âŒâ⌠t⊠âââ¿ âPP A 0 A 1 A a â1 â M i M 0 M 1 M d â1 Ï 0 ( L ) Ï 1 ( L ) Ï a â1 ( L ) Ï 2 1 âŠ Ï a â1 ( L ) Ï 2 âŠ Ï 0 ( L ) Ï 2 âŠ Ï 1 ( L ) Ï 2 âŠ Ï d â1 ( L ) P P P P P P P Ï 0 ( L ) Ï 1 ( L ) Ï a â1 ( L ) Ï 2 1 âŠ Ï a â1 ( L ) Ï 2 âŠ Ï 0 ( L ) Ï 2 âŠ Ï 1 ( L ) Ï 2 âŠ Ï d â1 ( L ) C 1 C 2 C d T L = P ( N ᅵ k ) Ï 1 = Ï â id , Ï 2 = Ï 2 â Ï â id ⢠ââsâ¡t Pâââ§ââ Pâ¡râ âtâtââŠâ¥ ââPPâ® â¬âââŒââ¶âºâª ⢠ââ¡â¥â¡rââ§ââ¢âtââŠâ¥ âŠâ¢ ââââžâ¿ ⢠Pâ¡râ âtâtââŠâ¥â²ââsâ¡â ⢠âŒâŠrâ¡ â¡â£âââ¡â¥t âŒââŒâ²â âsâŠââ¥â£ ⢠ââ¡âârâtâ¡ ââ£âââ¥st â¥âŠâ¥ââ¡â²râ¡sâ£â¡âtââ¥â£ ââââ¡rsârââ¡s âžâ· ⎠âºâ·
ââ£â£â§âââtââŠâ¥ âŠâ¢ âŒâ⌠t⊠âââ¿ âPP A 0 A 1 A a â1 â M i M 0 M 1 M d â1 Ï 0 ( L ) Ï 1 ( L ) Ï a â1 ( L ) Ï 2 1 âŠ Ï a â1 ( L ) Ï 2 âŠ Ï 0 ( L ) Ï 2 âŠ Ï 1 ( L ) Ï 2 âŠ Ï d â1 ( L ) P P P P P P P Ï 0 ( L ) Ï 1 ( L ) Ï a â1 ( L ) Ï 2 1 âŠ Ï a â1 ( L ) Ï 2 âŠ Ï 0 ( L ) Ï 2 âŠ Ï 1 ( L ) Ï 2 âŠ Ï d â1 ( L ) C 1 C 2 C d T L = P ( N ᅵ k ) Ï 1 = Ï â id , Ï 2 = Ï 2 â Ï â id ⢠ââsâ¡t Pâââ§ââ Pâ¡râ âtâtââŠâ¥ ââPPâ® â¬âââŒââ¶âºâª ⢠ââ¡â¥â¡rââ§ââ¢âtââŠâ¥ âŠâ¢ ââââžâ¿ ⢠Pâ¡râ âtâtââŠâ¥â²ââsâ¡â ⢠âŒâŠrâ¡ â¡â£âââ¡â¥t âŒââŒâ²â âsâŠââ¥â£ ⢠ââ¡âârâtâ¡ ââ£âââ¥st â¥âŠâ¥ââ¡â²râ¡sâ£â¡âtââ¥â£ ââââ¡rsârââ¡s âµâ³âºâº ââ£â âât†râ¡ââââ¡ââ²râŠââ¥â ââ²ââââ·â âžâ· ⎠âºâ·
â¶â³âµâ» ââ£â âât†râ¡ââââ¡ââ²râŠââ¥â ââ²ââââ·â ââ£â£â§âââtââŠâ¥ âŠâ¢ âŒâ⌠t⊠âââ¿ âŒââ T ᅵ 0 T ᅵ d â1 A 0 A a â1 M 0 M d â1 | A |ᅵ| M | Ï 0 ( L ) Ï a â1 ( L ) Ï 1 âŠ Ï 0 ( L ) Ï 1 âŠ Ï d â1 ( L ) Ï 2 ( L ) Ï 2 ( L ) P P P P P P Ï a â1 ( L ) Ï 1 âŠ Ï d â1 ( L ) Ï 0 ( L ) Ï 1 âŠ Ï 0 ( L ) Ï 2 ( L ) â M 0 Ï 2 ( L ) â M d â1 Ï 2 1 ( L ) C 1 C d P L = P ( N ᅵ k ) Ï 1 = Ï â id , Ï 2 = Ï 2 â Ï â id Ï 2 1 ( L ) T ⢠âŒâsâsâ¡â²ââ¡sâstââ¥t âPP ââŒâââ® â¬âââŒââ¶âºâª ⢠âââ§â§â¡ â¥âŠâ¥ââ¡â²â âsâsâ¡ râ¡sâstââ¥t ââ¡rsââŠâ¥ âŠâ¢ âPP âžâž ⎠âºâ·
ââ£â£â§âââtââŠâ¥ âŠâ¢ âŒâ⌠t⊠âââ¿ âŒââ T ᅵ 0 T ᅵ d â1 A 0 A a â1 M 0 M d â1 | A |ᅵ| M | Ï 0 ( L ) Ï a â1 ( L ) Ï 1 âŠ Ï 0 ( L ) Ï 1 âŠ Ï d â1 ( L ) Ï 2 ( L ) Ï 2 ( L ) P P P P P P Ï a â1 ( L ) Ï 1 âŠ Ï d â1 ( L ) Ï 0 ( L ) Ï 1 âŠ Ï 0 ( L ) Ï 2 ( L ) â M 0 Ï 2 ( L ) â M d â1 Ï 2 1 ( L ) C 1 C d P L = P ( N ᅵ k ) Ï 1 = Ï â id , Ï 2 = Ï 2 â Ï â id Ï 2 1 ( L ) T ⢠âŒâsâsâ¡â²ââ¡sâstââ¥t âPP ââŒâââ® â¬âââŒââ¶âºâª ⢠âââ§â§â¡ â¥âŠâ¥ââ¡â²â âsâsâ¡ râ¡sâstââ¥t ââ¡rsââŠâ¥ âŠâ¢ âPP â¶â³âµâ» ââ£â âât†râ¡ââââ¡ââ²râŠââ¥â ââ²ââââ·â âžâž ⎠âºâ·
ââtâ§ââ¥â¡ âârtâ€âââ¡ ââŠââ¥â âââs â â â£râŠââ¡â ââ¡âârâtâ¡ â¢âŠr âârtâ€âââ¡ ââŠââ¥â âââs â â â£râŠââ¡â ââ£âââ¡â¥ââ¡ â¢âŠr âârtâ€âââ¡ ââŠââ¥â âââs ââ¡â¡âŠâ¥â âârtâ€âââ¡ ââŠââ¥â âââs ââŠâ¥ââ§âsââŠâ¥ âžâ¹ ⎠âºâ·
ââ¡âârâtâ¡ âŠâ¢ âââ¬s âs â âŠstâ§â¡ ââŠâ ââ¥âtâ¡â ââ¡ sâ¡âârâtâ¡ âŠâ¢ ââŠr sâŠâ â¡ âââ¬s ââ¡â³â£â³â± ââââ± â£ââŒââ± âPPâ± â³ â³ â³ â®â¿ â³ â³ â³ â³ â³ â³ ââ âŠr ââ⥠ââ¡ ââ â£râŠââ¡ tâ€âsâ ââ¡âârâtâ¡ ââ¡â¡âŠâ¥â âârtâ€âââ¡ ââŠââ¥ââ ⢠ââ§â§ râ¡sââ§ts s⊠â¢ârâ¿ â⣠t⊠âârtâ€âââ¡ ââŠââ¥â âžâº ⎠âºâ·
ââŠr sâŠâ â¡ âââ¬s ââ¡â³â£â³â± ââââ± â£ââŒââ± âPPâ± â³ â³ â³ â®â¿ â³ â³ â³ â³ â³ â³ ââ âŠr ââ⥠ââ¡ ââ â£râŠââ¡ tâ€âsâ ââ¡âârâtâ¡ ââ¡â¡âŠâ¥â âârtâ€âââ¡ ââŠââ¥ââ ⢠ââ§â§ râ¡sââ§ts s⊠â¢ârâ¿ â⣠t⊠âârtâ€âââ¡ ââŠââ¥â ⢠ââ¡âârâtâ¡ âŠâ¢ âââ¬s âs â âŠstâ§â¡ ââŠâ ââ¥âtâ¡â ââ¡ sâ¡âârâtâ¡ âŠâ¢ ᅵ E âžâº ⎠âºâ·
ââ⥠ââ¡ ââ â£râŠââ¡ tâ€âsâ ââ¡âârâtâ¡ ââ¡â¡âŠâ¥â âârtâ€âââ¡ ââŠââ¥ââ ⢠ââ§â§ râ¡sââ§ts s⊠â¢ârâ¿ â⣠t⊠âârtâ€âââ¡ ââŠââ¥â ⢠ââ¡âârâtâ¡ âŠâ¢ âââ¬s âs â âŠstâ§â¡ ââŠâ ââ¥âtâ¡â ââ¡ sâ¡âârâtâ¡ âŠâ¢ ᅵ E ⢠ââŠr sâŠâ â¡ âââ¬s ââ¡â³â£â³â± ââââ± â£ââŒââ± âPPâ± â³ â³ â³ â®â¿ ᅵ ᅵ ᅵ Ï 2 ᅵ Ï O O 2 n 2 n â â³ â³ â³ â³ â ⳠⳠᅵ ââ â â â â â â â â E âŠr P E âžâº ⎠âºâ·
ââ¡âârâtâ¡ ââ¡â¡âŠâ¥â âârtâ€âââ¡ ââŠââ¥ââ ⢠ââ§â§ râ¡sââ§ts s⊠â¢ârâ¿ â⣠t⊠âârtâ€âââ¡ ââŠââ¥â ⢠ââ¡âârâtâ¡ âŠâ¢ âââ¬s âs â âŠstâ§â¡ ââŠâ ââ¥âtâ¡â ââ¡ sâ¡âârâtâ¡ âŠâ¢ ᅵ E ⢠ââŠr sâŠâ â¡ âââ¬s ââ¡â³â£â³â± ââââ± â£ââŒââ± âPPâ± â³ â³ â³ â®â¿ ᅵ ᅵ ᅵ Ï 2 ᅵ Ï O O 2 n 2 n â â³ â³ â³ â³ â ⳠⳠᅵ ââ â â â â â â â â E âŠr P E â â â ââ⥠ââ¡ ââ â£râŠââ¡ tâ€âsâ âžâº ⎠âºâ·
â¿ sâ¡âârâ¡ â⣠t⊠qââ¡rââ¡s â¬â²âââ¶â·â±PrâŠâ¶â¹âª â¡ââ¡â¥â¿ sâ¡âârâ¡ â⣠t⊠qââ¡rââ¡s â¬â²ââ¶âžâª ââŠâ¥â¥â¡âtârâ¡â¿ âŠâ£tââ ââ§ sâ¡âârâtâ¡ âââ âââ¡ââŠâââ§â¡ ââ§âŠââŠâââ£â€â¡rs â¢râŠâ ââ§âŠââŠâââ£â€â¡rs h 1 ( t ) h 1 ( t ) â h 2 ( t ) h Ï â 1 ( t ) â h Ï ( t ) h Ï ( t ) k 1 k 2 k Ï m · · · · · · c E E E ⢠LRW 2 [ Ï ] â¿ ââŠâ¥ââtâ¡â¥âtââŠâ¥ âŠâ¢ Ï LRW 2 â¬s ⢠k 1 , . . . , k Ï ââ¥â h 1 , . . . , h Ï ââ¥ââ¡â£â¡â¥ââ¡â¥t âžâ» ⎠âºâ·
âââ âââ¡ââŠâââ§â¡ ââ§âŠââŠâââ£â€â¡rs â¢râŠâ ââ§âŠââŠâââ£â€â¡rs h 1 ( t ) h 1 ( t ) â h 2 ( t ) h Ï â 1 ( t ) â h Ï ( t ) h Ï ( t ) k 1 k 2 k Ï m · · · · · · c E E E ⢠LRW 2 [ Ï ] â¿ ââŠâ¥ââtâ¡â¥âtââŠâ¥ âŠâ¢ Ï LRW 2 â¬s ⢠k 1 , . . . , k Ï ââ¥â h 1 , . . . , h Ï ââ¥ââ¡â£â¡â¥ââ¡â¥t â¢ Ï = 2 â¿ sâ¡âârâ¡ â⣠t⊠2 2 n/ 3 qââ¡rââ¡s â¬â²âââ¶â·â±PrâŠâ¶â¹âª â¢ Ï â¥ 2 â¡ââ¡â¥â¿ sâ¡âârâ¡ â⣠t⊠2 Ïn/ ( Ï +2) qââ¡rââ¡s â¬â²ââ¶âžâª ⢠ââŠâ¥â¥â¡âtârâ¡â¿ âŠâ£tââ ââ§ 2 Ïn/ ( Ï +1) sâ¡âârâtâ¡ âžâ» ⎠âºâ·
â¿ sâ¡âârâ¡ â⣠t⊠qââ¡rââ¡s â¬ââ²ââ¶âºâª â¡ââ¡â¥â¿ sâ¡âârâ¡ â⣠t⊠qââ¡rââ¡s â¬ââ²ââ¶âºâª ââŠâ¥â¥â¡âtârâ¡â¿ âŠâ£tââ ââ§ sâ¡âârâtâ¡ âââ âââ¡ââŠâââ§â¡ ââ§âŠââŠâââ£â€â¡rs â¢râŠâ Pâ¡râ âtâtââŠâ¥s h 1 ( t ) h 1 ( t ) â h 2 ( t ) h Ï â 1 ( t ) â h Ï ( t ) h Ï ( t ) P 1 P 2 P Ï m · · · · · · c ⢠TEM [ Ï ] â¿ ââŠâ¥ââtâ¡â¥âtââŠâ¥ âŠâ¢ Ï TEM â²â§ââŠâ¡â¬s ⢠P 1 , . . . , P Ï ââ¥â h 1 , . . . , h Ï ââ¥ââ¡â£â¡â¥ââ¡â¥t âžâŒ ⎠âºâ·
âââ âââ¡ââŠâââ§â¡ ââ§âŠââŠâââ£â€â¡rs â¢râŠâ Pâ¡râ âtâtââŠâ¥s h 1 ( t ) h 1 ( t ) â h 2 ( t ) h Ï â 1 ( t ) â h Ï ( t ) h Ï ( t ) P 1 P 2 P Ï m · · · · · · c ⢠TEM [ Ï ] â¿ ââŠâ¥ââtâ¡â¥âtââŠâ¥ âŠâ¢ Ï TEM â²â§ââŠâ¡â¬s ⢠P 1 , . . . , P Ï ââ¥â h 1 , . . . , h Ï ââ¥ââ¡â£â¡â¥ââ¡â¥t â¢ Ï = 2 â¿ sâ¡âârâ¡ â⣠t⊠2 2 n/ 3 qââ¡rââ¡s â¬ââ²ââ¶âºâª â¢ Ï â¥ 2 â¡ââ¡â¥â¿ sâ¡âârâ¡ â⣠t⊠2 Ïn/ ( Ï +2) qââ¡rââ¡s â¬ââ²ââ¶âºâª ⢠ââŠâ¥â¥â¡âtârâ¡â¿ âŠâ£tââ ââ§ 2 Ïn/ ( Ï +1) sâ¡âârâtâ¡ âžâŒ ⎠âºâ·
âtâtâ¡ âŠâ¢ tâ€â¡ ârt âââ§âŠââŠâââ£â€â¡r ââsâ¡ââ® ââŠst sâ¡âârâtâ¡ âŠâ¡â¡ sââ€â¡â â¡ â log 2 â® â§â¡â¥â£t†E â /h n/ 2 n â· âµ LRW 1 n/ 2 2 n â¶ â¶ LRW 2 n/ 2 n â· âµ XEX LRW 2 [2] 2 n/ 3 4 n â· â· LRW 2 [ Ï ] Ïn/ ( Ï +2) 2 Ïn Ï Ï max { n/ 2 , n â| t |} ââ£tââ ââ§ 2 n sâ¡âârâtâ¡ âŠâ¥â§â¡ â⢠âŠâ¡â¡ â§â¡â¥â£t†ââ¥â ââŠst â â â âžâœ ⎠âºâ·
â³ â³ ââ¡âârâtâ¡ tââ¡â⊠sââ€â¡âââ§â¡ strâŠâ¥â£â¡r tâ€â⥠âŠâ¡â¡ sââ€â¡âââ§â¡ âââ¡â⊠ââ¥â âŠâ¡â¡ ââ€ââ¥â£â¡ ââ£â£râŠâ ââ âtâ¡â§â¡ â¡qâââ§â§â¡ â¡â â£â¡â¥sâââ¡ ââ²âââââš â¬ââPâ¶â¹âª âŠâ¡â¡ sââ€â¡âââ§ââ¥â£ ââ§â¡â¥âs âŠâ¡â¡ ââ¥â tââ¡â⊠âââ¡ââŠâ²ââ¡â£â¡â¥ââ¡â¥t ââ¡â¡s â³ â³ ââ£âââ¡â¥ââ¡ tââ¡â⊠sââ€â¡âââ§â¡ â§ââ£â€tâ¡r tâ€â⥠âŠâ¡â¡ sââ€â¡âââ§â¡ âžâŸ ⎠âºâ·
âââ¡â⊠ââ¥â âŠâ¡â¡ ââ€ââ¥â£â¡ ââ£â£râŠâ ââ âtâ¡â§â¡ â¡qâââ§â§â¡ â¡â â£â¡â¥sâââ¡ ââ²âââââš â¬ââPâ¶â¹âª âŠâ¡â¡ sââ€â¡âââ§ââ¥â£ ââ§â¡â¥âs âŠâ¡â¡ ââ¥â tââ¡â⊠âââ¡ââŠâ²ââ¡â£â¡â¥ââ¡â¥t ââ¡â¡s â³ â³ â³ â³ ââ£âââ¡â¥ââ¡ ââ¡âârâtâ¡ tââ¡â⊠sââ€â¡âââ§â¡ â§ââ£â€tâ¡r tââ¡â⊠sââ€â¡âââ§â¡ strâŠâ¥â£â¡r tâ€â⥠âŠâ¡â¡ sââ€â¡âââ§â¡ tâ€â⥠âŠâ¡â¡ sââ€â¡âââ§â¡ âžâŸ ⎠âºâ·
Recommend
More recommend