Nonlinearâ©Modelâ© 28â©
Withoutâ©Controlâ© 29â©
Withâ©Governorâ©Controlâ© 30â©
Withâ©AVRâ© 31â©
Withâ©AVRâ©andâ©Governorâ©controlâ© 32â©
33â©
34â©
A ZORES I SLAND : E LECTRICAL C HARACTERISTICS [3], [4, C H . 3] F LORES I SLAND Radial 15 kV distribution network Total demand : ~2 MW Diesel generator with total capacity: 2.5 MW Hydro power generator with total capacity: 1.3 MW (reservoir) Wind turbine with total capacity: 0.6 MW S AO M IGUEL I SLAND Ring 60 kV and 30 kV distribution network Total demand - ~70 MW Two large diesel generators with total capacity: 97 MW Two large geothermal plants with total capacity: 27 MW 7 small hydro power generator with total capacity: 5 MW M. Honarvar Nazari and M. Ili Ä , âElectrical Networks of Azores Archipelagoâ, Chapter 3, Engineering IT-Enabled Electricity Services, Springer 2012.
Floresâ©Islandâ©Powerâ©System*â© H â Hydro D â Diesel W â Wind 36â© *Sketch by Milos Cvetkovic
Constantâ©powerâ©(caseâ©1)â© Microgrid 37â©
Constantâ©powerâ©(caseâ©2)â© 38â©
Constantâ©Impedanceâ© 39â©
D YNAMIC â©M ODEL â© OF â©F LORES â©I SLAND â©[4,C H .17]â© â 1 Ë Ë p = Ë GG â Ë GL Ë K J J J J LL LG Yeq ij = Kp ij ïŁź â D d C c ïŁč 0 ïŁź â 1 ïŁč ïŁŻ ïŁș M d M d ïŁŻ ïŁș ïŁź ïŁč ïŁŻ ïŁș ïŁź ïŁč M d ïŁź 0 ïŁč Ï G Ï G ïŁŻ ïŁș d â C d Ă K d â 1 â C d Ă K d ïŁŻ ïŁș ïŁŻ ïŁș ïŁŻ ïŁș ïŁŻ ïŁș ref m B = m B + 0 P G + 0 Ï G ïŁŻ ïŁș ïŁŻ ïŁș ïŁŻ ïŁș ïŁŻ ïŁș ïŁŻ ïŁș dt T d Ă R c T d T d ïŁŻ ïŁș ïŁŻ ïŁș ïŁŻ ïŁș ïŁŻ ïŁș P ïŁŻ ïŁș P 0 1 ïŁ° ïŁ» ïŁ° ïŁ» ïŁ° ïŁ» C C ïŁŻ ïŁș K I 0 0 ïŁŻ ïŁș ïŁ° ïŁ» ïŁŻ ïŁș ïŁ° ïŁ» d Ï G 1 m â D W 1 P P = Ï G â G ïŁź ( ) k q ïŁč dt M W M W M W â e H + D H 0 â k w ïŁŻ ïŁș M H M H M H ïŁŻ ïŁș ïŁź â 1 ïŁč ïŁź 0 ïŁč ïŁź Ï G ïŁč ïŁŻ 1 â 1 0 1 ïŁș ïŁź Ï G ïŁč ïŁŻ ïŁș ïŁŻ ïŁș M d 0 ïŁŻ ïŁș ïŁŻ ïŁș ïŁŻ ïŁș ïŁŻ ïŁș ïŁŻ ïŁș T f T d T w q q d ïŁŻ ïŁș ïŁŻ ïŁș ïŁŻ ïŁș ref 0 P = + ïŁŻ ïŁș G + ïŁŻ 0 ïŁș Ï G dt ïŁŻ v ïŁș ïŁŻ 0 0 â 1 a ïŁș ïŁŻ v ïŁș ïŁŻ ïŁș ïŁŻ ïŁș 0 1 ïŁŻ ïŁș ïŁŻ ïŁș ïŁŻ ïŁș One-line diagram of Flores Island ïŁŻ ïŁș ïŁŻ ïŁș a T e T e a ïŁ° ïŁ» ïŁ° ïŁ» ïŁŻ ïŁș ïŁŻ 0 ïŁș ïŁŻ T s ïŁș ïŁ° ïŁ» ïŁ° ïŁ» ( ) ïŁŻ â 1 0 â 1 â r H + âČ r ïŁș ïŁŻ ïŁș T s T s T s ïŁ° ïŁ» M. Ili Ä and M. Honarvar Nazari , âSmall Signal Stability Analysis for Systems with Wind Power Plants: The Extended State Space-based Modelingâ, Chapter 17, Engineering IT-Enabled Electricity Services, Springer 2012.
S MALL -S IGNAL S TABILITY OF F REQUENCY STABILITY IN F LORES [4,C H . 17] ï¶ Decoupled Real Power Voltage Dynamic Model ï§ Neglecting coupling between the electromechanical and electromagnetic parts of generators can lead to optimistic interpretation of dynamic stability. M. Honarvar Nazari and M. Ili Ä , âSmall Signal Stability Analysis for Systems with Wind Power Plants: The Extended State Space-based Modelingâ, Chapter 17, Engineering IT-Enabled Electricity Services, Springer 2012.
P OSSIBLE INSTABILITY OF C OUPLED V OLTAGE - F REQUENCY D YNAMICS ? [4,C H .17] ï¶ Strong interactions between the electromagnetic and electromechanical parts of the generators could result in an overall instability in the island. Masoud Honarvar Nazari [1] M. Honarvar Nazari and M. Ili Ä , âDynamic Stability of Azores Archipelagoâ, Chapter 14, Engineering IT- Enabled Electricity Services, Springer 2012.
InteracFonâ©variablesâ©â©withinâ©aâ©â©physicalâ©systemâ© ï¶ InteracLonâ©variablesâ©ââââ©variablesâ©associatedâ©withâ© subâsystemsâ©whichâ©canâ©onlyâ©beâ©affectedâ©byâ© interacLonsâ©withâ©theâ©otherâ©subâsystemsâ©andâ©notâ© byâ©theâ©â©internalâ©â©subâsystemâ©levelâ©stateâ©dynamicsâ© ï¶ Dynamicsâ©ofâ©physicalâ©â©interacLonâ©variablesâ©zeroâ© whenâ©theâ©systemâ©isâ©disconnectedâ©fromâ©â©otherâ© subâsystemsâ©â©â© ï¶ Aâ©meansâ©ofâ©definingâ©whatâ©needsâ©coordinaLonâ©atâ© theâ©zoomedâoutâ©layerâ©
Subsystemâlevelâ©Model ï¶ Standardâ©stateâ©spaceâ©modelâ© ï§ Local â©A a,kâ© â© hasâ© rankâ©deficiencyâ© toâ©theâ©magnitudeâ©atâ©leastâ© 1â© 44â©
Subsystemâlevelâ©Model ï¶ InteracLonâ©variableâ© -A linear combination of states x a,k -It spans the null space of A a,k -An aggregation variable ï¶ Dynamicâ©modelâ© ï¶ Physicalâ©interpretaLonâ© ï§ Drivenâ©onlyâ©byâ© externalâ©couplingâ© andâ© internalâ©controlâ© ï§ Invariant â©inâ©aâ© closed/disconnectedâ© and â©uncontrolledâ©systemâ© ï§ Representsâ©theâ© ConservaFonâ©ofâ©Powerâ© ofâ©theâ© Subsystemâ© 45â©
Stronglyâ©coupledâ©subsystemsâ© ï¶ Notâ©possibleâ©toâ©makeâ©theâ©keyâ©hierarchicalâ© systemâ©assumpLonâ©thatâ©fastâ©responseâ©isâ© alwaysâ©localized;â©deadâendâ©toâ©classicalâ©LSSâ©â© ï¶ Fastâ©controlâ©mustâ©accountâ©forâ©systemâwideâ© interacLonsâ©
Weaklyâ©coupledâ©subsystemsâ©
IntVâbasedâ©approachâ©toâ©coordinatedâ©dynamics ï¶ Minimalâ©â©coordinaLonâ©byâ©usingâ©anâ©aggregaLonâbasedâ©noLonâ© ofâ©â©``dynamicâ©interacLonsâ©variableââ© Zoom-in Zoom-out ⊠48â©
IntVâbasedâ©minimalâ©coordinaFon Information Exchange ⊠Nonlinear IntV âCvetkovic, PhD thesis, CMU, Dec 2013
Physics/modelâbasedâ©spaFalâ©scalingâ©upâ© ï¶ Mustâ©avoidâ©emergingâ©problemsâ©â© ï¶ 50.2Hzâ©problemâ©inâ©Germanyâ©becauseâ©ofâ©â© poorlyâ©controlledâ©PVâ© ï¶ Howâ©toâ©aggregateâ©theâ©newâ©openâ©accessâ© systemsâ©withâ©newâ©technologiesâ©(windâ©powerâ© plants,â©PVs,â©geothermal)â©soâ©thatâ©thereâ©isâ©noâ©â© closedâloopâ©controlâ©problem?â© ï¶ Mustâ©understandâ©â©â©LmeâspaLalâ©interacLonsâ©inâ© theâ©interconnectedâ©system.â©â©â©
Physics/Modelâ©Basedâ©SpaFalâ©Scalingâ©Upâ©forâ©CPSâ©Designâ© â SBA :â©Smartâ©Balancingâ© AuthoriLesâ©(GeneralizaLonâ© ofâ© Controlâ©Area )â© â IR :â©InterâRegionâ© â R :â©Regionâ© â T :â©TerLaryâ© â D :â©DistribuLonâ© â S :â©Smartâ©Componentâ© â Theâ©actualâ©numberâ©ofâ© layersâ©dependsâ©onâ©needs/ technologiesâ©available/ CONFLICTING OBJECTIVESâCOMPLEXITY electricalâ©characterisFcsâ©ofâ© AND COST OF COMMUNICATIONS VS. theâ©gridâ© COMPLEXITY AND COST OF SENSORS,CONTROL ``SMART BALANCING AUTHORITYâ CREATED IN A BOTTOM-UP WAY (AGREGATION)--DyMonDS; 51â© --COMPARE WITH CONVENTIONAL TOP-DOWN DECOMPOSITION
Keyâ©idea:â©Smartâ©Balancingâ©AuthoriFesâ© (SBAs)â©forâ©Alignedâ©SpaceâTimeâ©Dynamicsâ©â© ï¶ AdapLveâ©AggregaLonâ©forâ©Aligningâ©Temporalâ©andâ© SpaLalâ©Complexityâ© ï¶ Fastâ©repeLLveâ©informaLonâ©exchange/learningâ© withinâ©SBAsâ©(localâ©networks;â©porLonsâ©ofâ© backboneâ©system)â© ï¶ MulLâlayeringâ©(nestedâ©architecture)â©possibleâ© ï¶ Withoutâ©wideâspreadâ©â©nonlinearâ©localâ©controlâ©andâ© carefullyâ©aggregatedâ©â©â©SBAsâ©hardâ©toâ©haveâ© economicâ©guaranteedâ©performanceâ© ï¶ Naturalâ©outgrowthâ©ofâ©todayâsâ©hierarchicalâ©controlâ© (Electriciteâ©deâ©Franceâ©hasâ©mostâ©advancedâ©â© primary,â©secondaryâ©andâ©terLaryâ©control)â©
Endâtoâendâ©CPSâ©forâ©Bulkâ©Powerâ©Systemsâ© (Architectureâ©1)â© Theâ©roleâ©ofâ©bigâ©dataâ©inâ©onâlineâ©resourceâ©managementâ© Importsâ©canâ©beâ©increasedâ©byâ©theâ©following:â© ï Moreâ©reliableâ©dynamicâ©raLngâ©ofâ©â©lineâ©limitsâ©â© ï OpLmalâ©â©generatorâ©voltagesâ© ï OpLmalâ©â©sewngsâ©ofâ©gridâ©equipmentâ©(CBs,â©OLTCs,â©PARs,â© DCâ©lines,â©SVCs)â©â© ï Demandâsideâ©managementâ©(idenLfyingâ©loadâ©pocketsâ©withâ© problems)â© ï OpLmalâ©selecLonâ©â©ofâ©newâ©equipmentâ©(type,â©size,â© locaLon)â© Naturalâ©reducLonâ©ofâ©losses,â©reducLonâ©ofâ©VARâ©consumpLon,â© reducLonâ©ofâ©equipmentâ©stressâ©
On-line resource management can prevent blackoutsâŠ. 54â©
QuesFonableâ©pracFceâ© ï¶ Nonlinearâ©dynamicsâ©relatedâ© â©âUseâ©ofâ©modelsâ©whichâ©doâ©notâ©captureâ©instabilityâ© â©âAllâ©controllersâ©areâ©constantâ©gainâ©â©andâ©decentralizedâ©(local)â© â©âRelaLvelyâ©smallâ©numberâ©ofâ©controllersâ© â©âPoorâ©onâlineâ©observabilityâ© ï¶ Timeâspaceâ©networkâ©complexityâ©relatedâ© â©âfasterâ©processesâ©stableâ©(theoreLcalâ©assumpLon)â© â©âconservaLveâ©resourceâ©schedulingâ©(industry)â© â©â©âââ©weakâ©interconnecLonâ©â© â©ââfastestâ©responseâ©localizedâ© â©â©â©â©â©ââlackâ©ofâ©â©coordinatedâ©economicâ©â©schedulingâ©â© â©âââ©linearâ©networkâ©constraintsâ©whenâ©opLmizingâ©resourceâ©schedulesâ© â©ââprevenLveâ©(theâ©``worstâ©caseââ©)â©approachâ©toâ©â©guaranteedâ©performanceâ©inâ© abnormalâ©condiLonsâ©
The Role of State Estimation (SE) for Optimization Loads SE is done every two minutes AC State Power System Estimation All measurements are scanned and collected within five seconds Predicted load Every ten minutes System New set points for AC OPF/UC operator controllable equipment Loads
Theâ©Keyâ©Roleâ©ofâ©Nonlinearâ©LSSâ©Networkâ©OpFmizaFonâ© ï¶ Baseâ©caseâ©forâ©theâ©givenâ©NPCCâ©systemâ©inâ©2002â©andâ©theâ©2007â© projectedâ©loadâ© ï¶ Theâ©wheelâ©fromâ©PJMâ©â©(Waldwick)â©throughâ©NYISOâ©toâ©IESOâ© (Milton)â©âtheâ©maximumâ©wheelâ©feasibleâ©100MWâ© ï¶ OpLmizedâ©â©realâ©powerâ©generaLonâ©toâ©supportâ©anâ©increasedâ© wheelâ©fromâ©PJMâ©(AlburLs)â©throughâ©NYISOâ©toâ©â©IESOâ©(Milton)â©âtheâ© maximumâ©feasibleâ©wheelâ©1,200MWâ© ï¶ Withâ©theâ©voltageâ©schedulingâ©opLmizedâ©withinâ©+/ââ©.03puâ©range,â© w/oâ©anyâ©realâ©powerâ©reschedulingâ©theâ©maximumâ©powerâ©transferâ© increasedâ©toâ©2,900MWâ©intoâ©bothâ©AlburLsâ©andâ©Waldwick;â© ï¶ Withâ©theâ©voltageâ©schedulingâ©opLmizedâ©withinâ©+/ââ©.05puâ©theâ© feasibleâ©transferâ©increasedâ©toâ©3,100MWâ©atâ©bothâ©AlburLsâ©andâ© Waldwickâ© ï¶ Withâ©bothâ©voltagesâ©opLmizedâ©withinâ©+/â.05puâ©andâ©realâ©powerâ© reâscheduledâ©byâ©theâ©NYISO,â©theâ©maximumâ©wheelâ©possibleâ© aroundâ©8,800MWâ© 57â©
CriFcal:â©Transformâ©SCADAâ© ï¶ Fromâ©singleâ©topâdownâ©â©coordinaLngâ©managementâ©toâ© theâ©â©mulLâdirecLonalâ©mulLâlayeredâ©interacLveâ©ITâ© exchange.â©â© ï¶ Atâ©CMUâ©weâ©callâ©suchâ©transformedâ©SCADAâ©Dynamicâ© Monitoringâ©andâ©Decisionâ©Systemsâ©(DYMONDS)â©andâ© haveâ©formedâ©aâ©Centerâ©toâ©workâ©withâ©industryâ©andâ© governmentâ©on:â©(1)â©newâ©modelsâ©toâ©defineâ©whatâ©isâ©theâ© typeâ©andâ©rateâ©ofâ©keyâ©â©ITâ©exchange;â©(2)â©newâ©decisionâ© toolsâ©forâ©selfâcommitmentâ©andâ©clearingâ©suchâ© commitments.â©\hqp:www.eesg.ece.cmu.edu.â©
Basicâ©cyberâ©systemâ©todayâ©âbackboneâ©SCADAâ©
Physical and Information Network Graphs Today Network graph of the physical system Information graph of todayâs SCADA Local serving entities (LSEs) Load serving entities (LSEs) Local Distribution Network (Radio Network) Dies PQ PQ PQ Wind PQ el Information flow: MISO State information exchange Backbone Power Grid Backbone LS and its E LS LS Local Networks (LSEs) E E LS LS LS E E E LS LS LS LS E E E E LS E LS LS LS LS E E E E LS E LS LS E LS E E LS E Redundant LS measurement sent to E LS Control center (hub) E
Futureâ©Smartâ©Gridâ©(Physicalâ©system)â©
DyMonDSâ©Approachâ©â© ï¶ Physicsâbasedâ©modelingâ©andâ©localâ©nonlinearâ©stabilizingâ©control;â© newâ©controllersâ©(storage,demandâ©control);â©newâ©sensorsâ© (synchrophasors)â©toâ©â©improveâ©observabilityâ©â© ï¶ InteracLonâ©variablesâbasedâ©modelingâ©approachâ©toâ©manageâ© Lmeâspaceâ©complexityâ©andâ©ensureâ©noâ©systemâwideâ©instabiliLesâ© ï¶ Divideâ©andâ©conquerâ©overâ©spaceâ©andâ©Lmeâ©whenâ©opLmizingâ© â©âDyMonDSâ©forâ©internalizingâ©temporalâ©uncertainLesâ©andâ©risksâ©atâ© theâ©resourceâ©andâ©userâ©level;â©interacLveâ©informaLonâ©exchangeâ© toâ©supportâ©distributedâ©opLmizaLonâ© â©âperformâ©staLcâ©nonlinearâ©opLmizaLonâ©toâ©accountâ©forâ©nonlinearâ© networkâ©constraintsâ© â©âenablesâ©correcLveâ©acLonsâ©â© ï¶ SimulaLonâbasedâ©proofâ©ofâ©conceptâ©forâ©lowâcostâ©greenâ©electricâ© energyâ©systemsâ©inâ©theâ©â©Azoresâ©Islandsâ©â©
Newâ©SCADAâ©
DYMONDSâenabledâ©Physicalâ©Gridâ©â©
Theâ©persistentâ©challenge:â©â©SEâ©toâ©supportâ©onâlineâ© schedulingâ©implementaFon â© Current Power System State Estimation Problems Historical Data New devices (i.e. Nonlinearity are not really PMU) placement Non-convexity used problem Convexificatio Non- Information Theory Parametric n parametric based algorithm Dynamic state Semi-definite Static state for State Estimation Programming Estimation Estimation Graph-based Parallel Computational distributed Computing Burden SDP SE Algorithm
Multilayer Information for State Estimation Physical Layer Online Diagram Information Layer Diagram Local serving entities (LSEs) Load serving entities (LSEs) Local Distribution Network (Radio Network) Dies PQ PQ PQ Wind PQ el Information flow: MISO State information exchange Backbone Power Grid Backbone LS and its E LS LS Local Networks (LSEs) E E LS LS LS E E E LS LS LS LS E E E E LS State information E LS LS Exchange on the LS LS E E boundary nodes E E LS E LSE LSE LS LS E LS E Local State Estimation (LSE) E LS E Distributed SE Distributed SE LS Computation Computation E LS E
Idealâ©Placementâ©ofâ©PMUsâ© 14 bus example graphical representation Qiao Li, Tao Cui, Yang Weng, Rohit Negi, Franz Franchetti and Marija D. Ilic, âAn information theoretic approach to PMU placement in electric power systems, IEEE Transactions on Smart Grid, Special Issue on Computational Intelligence Applications in Smart Grids. (Accepted, to appear) 2013
PMUâ©InformaFonâ©Gainâ©Indexâ© Qiao Li, Tao Cui, Yang Weng, Rohit Negi, Franz Franchetti and Marija D. Ilic, âAn information theoretic approach to PMU placement in electric power systems, IEEE Transactions on Smart Grid, Special Issue on Computational Intelligence Applications in Smart Grids. (Accepted, to appear) 2013
PotenFalâ©â©Useâ©ofâ©RealâTimeâ©Measurementsâ©forâ©â© â©DataâDrivenâ©Controlâ©andâ©DecisionâMakingâ©(new)â© ï¶ â© â© GPSâ©synchronizedâ©measurementsâ© (synchrophasorsâ©;â©powerâ©measurementsâ©atâ©theâ© customerâ©side).â© ï¶ Theâ©keyâ©roleâ©ofâ©â©offâlineâ©andâ©onâlineâ© compuLng.â©Tooâ©complexâ©toâ©manageâ©relevantâ© interacLonsâ©â©usingâ©â©modelsâ©andâ©sotwareâ©â© currentlyâ©usedâ©forâ©planningâ©andâ©operaLons.â© ï¶ Ourâ©proposedâ©design:â©Dynamicâ©Monitoringâ© andâ©Decisionâ©Systemsâ©(DYMONDS)â© 69â©
Theâ©roleâ©ofâ©cyberâ©inâ©bulkâ©powerâ©gridsâ© ï¶ Onâlineâ©schedulingâ©andâ©automatedâ©regulaLonâ© ï¶ PotenLalâ©useâ©ofâ©bigâ©dataâ©forâ©schedulingâ©â© â©âTheâ©roleâ©ofâ©bigâ©dataâ©â©forâ©accurateâ©stateâ©esLmaLonâ© â©âTheâ©roleâ©ofâ©bigâ©dataâ©forâ©onâlineâ©resourceâ©managementâ© ï¶ Effectsâ©ofâ©paradigmâ©shitâ©onâ©dataâ©needsâ© ï¶ Puwngâ©PMUsâ©toâ©useâ©forâ©enhancedâ©AutomaLcâ©GeneraLonâ©Controlâ© (EâAGC),â©enhancedâ©AutomaLcâ©Voltageâ©Controlâ©(EâAVC)â©andâ© enhancedâ©â©automaLcâ©flowâ©controlâ©(EâAFC)â©inâ©systemsâ©withâ©highlyâ© variableâ©resourcesâ© ï¶ Possibleâ©waysâ©forwardâ©
Onâlineâ©schedulingâ©andâ©â©automaFcâ©regulaFonâ© ï¶ Systemâ©Loadâ©Curveâ© 71
â© PMUsâenabledâ©gridâ©forâ©efficientâ©andâ©reliableâ© schedulingâ©â©toâ©balanceâ©predictableâ©loadâ© ï¶ PMUsâ©â©andâ©SCADAâ©helpâ©moreâ©accurateâ©stateâ© esLmateâ©ofâ©lineâ©flows,â©voltagesâ©andâ©real/reacLveâ© powerâ©demandâ© ï¶ ACâ©OPFâ©uLlizesâ©accurateâ©systemâ©inputsâ©andâ© computesâ©sewngsâ©forâ©â©controllableâ©grid,â© generaLonâ©andâ©demandâ©equipmentâ©toâ©helpâ© manageâ©theâ©systemâ©reliablyâ©andâ©efficientlyâ© ï¶ Adjustmentsâ©doneâ©everyâ©15â©minutesâ© ï¶ ModelâpredicLveâ©generaLonâ©andâ©demandâ©dispatchâ© toâ©manageâ©rampâ©ratesâ©
Onâlineâ©automatedâ©regulaFonâ© ïŒ Constrainedâ©Lineâ© DLRâ© ïŒ LineâtoâGroundâ©Clearanceâ© ïŒ Transferâ©Capacityâ©inâ©Realâ© Timeâ© PMU ïżœ Control ïżœ 73
74 Predictable load and the disturbance 74
PotenFalâ©useâ©ofâ©bigâ©dataâ©forâ©schedulingâ© ï¶ Beqerâ©Lmeâstampedâ©archivesâ©ofâ©largeâ©networkâ©dataâ© (inputs,â©states,â©outputs;â©equipmentâ©status)â© ï¶ Enhancedâ©systemâlevelâ©stateâ©esLmaLonâ©(notâ©justâ© staLcâ©WLS)â© ï¶ Beginâ©toâ©createâ©dataâ©structuresâ©thatâ©revealâ©temporalâ© and/orâ©spaLalâ©correlaLonsâ©â©inâ©complexâ©grids;â©moreâ© efficientâ©andâ©reliableâ©onâlineâ©resourceâ©managementâ© ï¶ Offâlineâ©analysisâ©â©(effectsâ©ofâ©â©largeâ©numberâ©ofâ© possibleâ©equipmentâ©failuresâ©andâ©inputâ©variability)â©
Multilayer Information for State Estimation Physical Layer Online Diagram Information Layer Diagram Local serving entities (LSEs) Load serving entities (LSEs) Local Distribution Network (Radio Network) Dies PQ PQ PQ Wind PQ el Information flow: MISO State information exchange Backbone Power Grid Backbone LS and its E LS LS Local Networks (LSEs) E E LS LS LS E E E LS LS LS LS E E E E LS State information E LS LS Exchange on the LS LS E E boundary nodes E E LS E LSE LSE LS LS E LS E Local State Estimation (LSE) E LS E Distributed SE Distributed SE LS Computation Computation E LS E
Puingâ©PMUsâ©toâ©Useâ©forâ©EâAVC,â©â©EâAFCâ©andâ©EâAGCâ© ï¶ Needâ©forâ©advancedâ©sensingâ©technologyâ© ï§ PMUs â©toâ©measureâ©theâ©couplingâ©statesâ©(voltageâ©phaseâ©angles)â©onâ©realâLmeâ© ï¶ Needâ©forâ©communicaLonâ©channelsâ© ï§ Uploadâ©infoâ©toâ©theâ©upperâ©layerâ© ï§ Exchangeâ©infoâ©withâ©neighboringâ©layersâ©forâ©feedbackâ©controlâ©ofâ©theâ©couplingâ© SBA-IR Highly limited Info Exchange SBA-R1 SBA-R3 SBA-R2 Lightly loaded Info Exchange C2 C9 C6 C1 C4 C7 C3 C5 C8 77â©
Puingâ©PMUsâ©toâ©Useâ©forâ©AVCâ©â© Pilot Point: Bus 76663 78
ï¶ Robustâ©AVCâ©IllustraFonâ©inâ©NPCCâ©System All load buses are Monitored 79
Pilot Point: Bus 75403 80
81 â©AVCâ©â©forâ©theâ©NPCCâ©withâ©PMUsâ© Simulations to show the worst voltage deviations in response to the reactive power load fluctuations (3 hours) 2 Pilot Points Control Performs Better Than 1 Pilot Point! 81
PMUâdrivenâ©EâAGCâ©forâ©managingâ©solarâ©andâ©windâ©deviaFonâ© 82â©
EâAFCâ©â©Usingâ©PMUsââ©NPCCâ©Systemâ© Control real power disturbance âŠ.Versions of AVC implemented in EdF Italy, China.. It may be time to consider by the US utilities Liu and Ilic, âToward PMU-Based Robust Automatic Voltage Control (AVC) and Automatic Flow Control (AFC),â IEEE PES, 2008
PMUâdrivenâ©EâAGCâ©forâ©managingâ©solarâ©andâ©windâ©deviaFon Areas 1 and 2: coupled by large reactance Disturbances Injected from the Solar SBA-C locally stabilized (unstable, W- SBA-Csâ coupling minimized (stable, Power Resource matrix condition for SBA-Cs unsatisfied) W-matrix for SBA-Rs satisfied) 84â©
EâAGCâ©ââ©strongâ©interacFonsâ© (A) (B) (D) (C) 85â©
Theâ©dangerâ©ofâ©systemâwideâ©instabiliFesâ©â©
Systemâwideâ©fastâ©interacFonsâ©
Standardsâ©forâ©provableâ©dynamicâ©â©performance?â© ï¶ Hugeâ©spaceâ©forâ©rethinkingâ©sensing,â©control,â© communicaLonsâ©forâ©largeâscaleâ©systemsâ© ï¶ Fundamentallyâ©nonlinearâ©dynamicâ©systemâââ theâ©keyâ©roleâ©andâ©opportunityâ©toâ©deployâ©whatâ©isâ© alreadyâ©knownâ©(useâ©ofâ©powerâ©electronics)â© ï¶ Onceâ©closedâloopâ©linearâ©problemâ©oneâ©canâ© designâ©muchâ©moreâ©efficientâ©dynamicâ© schedulingâ©thanâ©currentlyâ©usedâ©simplifiedâ©(theâ© quesLonâ©ofâ©``rampâ©rateâ)â© 88â©
Powerâ©plantâ©dynamicsâ©andâ©itsâ©localâ©controlâ©â©
FBLCâbasedâ©Efdâ©controllerâ©â© ï¶ ConvenLonalâ©powerâ©systemâ©stabilizerâ©controlsâ© DCâ©excitaLonâ©Efdâ©ofâ©theâ©rotorâ©windingâ©inâ© responseâ©toâ©omegaâ©andâ©Eâ© ï¶ FBLCâbasedâ©Efdâ©controlâ©respondsâ©toâ©acceleraLonâ©
Theâ©roleâ©ofâ©â©FBLCâ©controlâ©inâ©prevenFngâ©blackoutsâ©â© ï¶ Aâ©38ânode,â©29â©machineâ©â©dynamicâ©â©modelâ©ofâ©theâ©NPCCâ©systemâ© ï¶ Aâ©mulLâmachineâ©oscillaLonâ©occurredâ©atâ©.75Hz,â©involvingâ© groupsâ©ofâ©machinesâ©inâ©NYCâ©andâ©theâ©northeasternâ©partâ©ofâ©Newâ© Yorkâ©State,â©asâ©wellâ©asâ©partsâ©ofâ©Canadianâ©powerâ©system;â© ï¶ Theâ©faultâ©scenarioâ©selectedâ©forâ©thisâ©testâ©wasâ©aâ©fiveâcycleâ©threeâ phaseâ©shortâ©circuitâ©ofâ©theâ©Selkrik/Oswegoâ©transmissionâ©lineâ© carryingâ©1083MW.â©Theâ©oscillaLonâ©growsâ©unLlâ©theâ©Chateaguayâ© generatorâ©losesâ©synchronism,â©followedâ©â©shortlyâ©byâ©theâ©failureâ© ofâ©Oswegoâ©unit.â©â©â© 91â©
Rotorâ©anglesâ©âââ©baseâ©caseâ©forâ©Selkrikâ©faultâ©â©withâ©convenFonalâ©controllerâ© 92â©
Voltageâ©responseâ©withâ©convenFonalâ©â©controllersâbaseâ©caseâ© Selkrikâ©faultâ© Thisâ©talkâ©isâ©parLallyâ©basedâ© onâ©theâ©IEEEâ©Proc.â©â©paper,â© 93â© Novâ©2005â©â©
Busâ©voltagesâ©withâ©newâ©controllersâ©â© Thisâ©talkâ©isâ©parLallyâ©basedâ© onâ©theâ©IEEEâ©Proc.â©â©paper,â© 94â© Novâ©2005â©â©
Rotorâ©angleâ©responseâ©withâ©localâ©nonlinearâ©â©â© controllersââanâ©earlyâ©exampleâ©ofâ©flatâ©controlâ© designâ© Thisâ©talkâ©isâ©parLallyâ©basedâ© onâ©theâ©IEEEâ©Proc.â©â©paper,â© 95â© Novâ©2005â©â©
Nonlinearâ©controlâ©forâ©storageâ©devicesâ©(FACTS,flywheels)â© No controller on TCSC Linear PI power controller [2] Nonlinear Lyapunov controller [3] [1] The test system: J. W. Chapman, âPower System Control for Large Disturbance Stability: Security, Robustness and Transient Energyâ , Ph.D. Thesis: Massachusetts Institute of Technology, 1996. [2] Linear controller: L. Angquist, C. Gama, âDamping Algorithm Based on Phasor Estimationâ , IEEE Power Engineering Society Winter Meeting, 2001 [3] Nonlinear controller: M. Ghandhari, G. Andersson, I. Hiskens, âControl Lyapunov Function for Controllable Series Devicesâ , IEEE Transactions on Power Systems, 2001, vol. 16, no. 4, pp. 689-694
Useâ©ofâ©interacFonâ©variablesâ©inâ©stronglyâ©coupledâ©systemsâ© Interaction variable choice 1: Interaction variable choice 2:
FBLCââTheâ©majorâ©promiseâ©forâ©plugâandâ©playâ©â© realisFcâ©â©decentralizedâ©sensorsâ©andâ©controllersâ© ï¶ Embeddedâ©FBLCâ©withâ©rightâ©sensorsâ©andâ©filtersâ©makesâ©theâ©closedâloopâ© dynamicsâ©simpleâ©(linear)â© ï¶ Shownâ©toâ©cancelâ©dynamicâ©interacLonsâ©betweenâ©theâ©componentsâ© ï¶ Increasedâ©numberâ©andâ©typesâ©ofâ©fastâ©controllersâ©(fromâ©PSSâ©onâ© generators,â©toâ©aâ©mixâ©withâ©â©â©VSDâ©ofâ©â©dispersedâ©loadsâ©(forâ©efficiency)â©;â© powerâelectronicallyâ©controlledâ©reacLveâ©storageâ©devicesâ©âFACTS;â© powerâ©electronicallyâ©controlledâ©smallâ©dispersedâ©storageâ©âflywheels)â© ï¶ Weâ©areâ©workingâ©onâ©``standardsâ©forâ©dynamicsââ©inâ©futureâ©electricâ© energyâ©systemsâ©(w/oâ©theâ©promiseâ©ofâ©FBLCâ©hardâ©toâ©makeâ©themâ© provable)â©
Minimallyâ©coordinatedâ©selfâdispatchâDyMonDSâ© ï¶ Distributedâ©managementâ©ofâ©temporalâ©interacLonsâ©ofâ© resourcesâ©andâ©usersâ©â© ï¶ Differentâ©technologiesâ©performâ©â©lookâaheadâ©predicLonsâ© andâ©â©opLmizeâ©theirâ©expectedâ©profitsâ©â©givenâ©systemâ© signalâ©(priceâ©orâ©â©systemâ©netâ©demand);â©theyâ©createâ©â©bidsâ© andâ©theseâ©getâ©clearedâ©byâ©theâ©â©(layersâ©of)â©coordinatorsâ© ï¶ Puwngâ©AucLonsâ©â©toâ©â©Workâ©inâ©Futureâ©Energyâ©â©Systemsâ© ï¶ DyMonDSâbasedâ©simulatorâ©ofâ©nearâopLmalâ©supplyâ demandâ©balancingâ©inâ©anâ©energyâ©systemâ©withâ©wind,â© solar,â©convenLonalâ©generaLon,â©elasLcâ©demand,â©andâ© PHEVs.â©â©
Centralizedâ©MPCâ©âBenchmarkâ©â© PredicLveâ©Modelâ©andâ© MPCâ©OpLmizerâ© Electricâ©Energyâ©Systemâ© ï¶ PredicLveâ©modelsâ©ofâ©loadâ©andâ©intermiqentâ© resourcesâ©areâ©necessary.â© ï¶ OpLmizaLonâ©objecLve:â©minimizeâ©theâ©totalâ© generaLonâ©cost.â© ï¶ Horizon:â©24â©hours,â©withâ©eachâ©stepâ©ofâ©5â©minutes.â© 100â©
Recommend
More recommend