towards a rigorous proof of haldane s photonic bulk edge

Towards a Rigorous Proof of Haldanes Photonic Bulk-edge - PowerPoint PPT Presentation

Towards a Rigorous Proof of Haldanes Photonic Bulk-edge Correspondence joint work with Giuseppe De Nittis Max Lein Advanced Institute of Materials Research, Tohoku University 2018.09.04@ETH Zrich . . . . . .. . . . . . . .. . . . .


  1. . Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Bulk-Edge Correspondence . Da Capo Quantum vs. Classical Equations: a Single Spin Idea Start with the same equations of motion, πœ” 2 (𝑒)) = ( 0 0 ) (πœ” 1 (𝑒) πœ” 2 (𝑒)) , once in the quantum and then in the classical context. Math is trivial, everything is explicit Immediately transfers to many other hamiltonian equations as . . . . . . . . . . . . . . . . . . . . . . . . Conceptually applies to all classical wave equations . . . . . βˆ’ i πœ• 0 i πœ– + i πœ• 0 πœ–π‘’ (πœ” 1 (𝑒) 𝐾 = i 𝜏 2 is the canonical symplectic form

  2. . Bulk-Edge Correspondence . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Da Capo . Symmetries of Classical and Quantum Spin Equations Purpose Anticipate symmetry classifjcation of electromagnetic media πœ” 2 (𝑒)) = ( 0 0 ) (πœ” 1 (𝑒) πœ” 2 (𝑒)) , What is the difgerence between the quantum and classical equations when it comes to symmetries? What types of symmetries does the classical equation possess (in the context of the Cartan-Altland-Zirnbauer classifjcation)? . . . . . . . . . . . . . . . . . . . . . . . . . ⟹ Requires us to work with complex Hilbert spaces . . . . . βˆ’ i πœ• 0 i πœ– + i πœ• 0 πœ–π‘’ (πœ” 1 (𝑒)

  3. . Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Bulk-Edge Correspondence . Da Capo Symmetries of Classical and Quantum Spin Equations Purpose Anticipate symmetry classifjcation of electromagnetic media πœ” 2 (𝑒)) = ( 0 0 ) (πœ” 1 (𝑒) πœ” 2 (𝑒)) , What is the difgerence between the quantum and classical equations when it comes to symmetries? What types of symmetries does the classical equation possess . . . . . . . . . . . . . . . . . . . . . . . . ⟹ Requires us to work with complex Hilbert spaces . . . . . βˆ’ i πœ• 0 i πœ– + i πœ• 0 πœ–π‘’ (πœ” 1 (𝑒) (in the context of the Cartan-Altland-Zirnbauer classifjcation)?

  4. . 0 = +𝐼 2 (chiral) Symmetries Building blocks πœ” 2 (𝑒)) ) (πœ” 1 (𝑒) . 𝐷 𝐼 𝐷 = 𝐼 = βˆ’πΌ πœ” 2 (𝑒)) = ( Fundamental equation Quantum Symmetries of Classical and Quantum Spin Systems Da Capo Bulk-Edge Correspondence Topological Classifjcation (ordin.) (+PH) Quantum vs. Classical 𝑁 𝑦 (𝑒) (+PH) 𝐷 𝐼 𝐷 = 𝐼 = βˆ’πΌ (ordin.) = +𝐼 2 (chiral) Symmetries Building blocks (-PH) 𝑁 𝑧 (𝑒)) ) (𝑁 𝑦 (𝑒) 0 0 𝑁 𝑧 (𝑒)) = ( Fundamental equation Classical Maxwell’s Equations in Linear Media 0 . . . . . . . . . . . . . . . . . . . . . . . . (-PH) . . . . . . . . . . . . . . βˆ’ i πœ• 0 βˆ’ i πœ• 0 i πœ– i πœ– + i πœ• 0 + i πœ• 0 πœ–π‘’ (𝑁 𝑦 (𝑒) πœ–π‘’ (πœ” 1 (𝑒) Hamiltonian: 𝐼 = πœ• 0 𝜏 2 Hamiltonian: 𝐼 = πœ• 0 𝜏 2 = 𝐼 βˆ— States: ( πœ” 1 (𝑒) States: ( 𝑁 𝑧 (𝑒) ) ∈ β„‹ ℝ = ℝ 2 πœ” 2 (𝑒) ) ∈ β„‹ β„‚ = β„‚ 2 𝜏 1,3 𝐼 𝜏 βˆ’1 1,3 = βˆ’πΌ 𝜏 1,3 𝐼 𝜏 βˆ’1 1,3 = βˆ’πΌ 𝜏 2 𝐼 𝜏 βˆ’1 𝜏 2 𝐼 𝜏 βˆ’1 (𝜏 1,3 𝐷) 𝐼 (𝜏 1,3 𝐷) βˆ’1 = +𝐼 (+TR) (𝜏 1,3 𝐷) 𝐼 (𝜏 1,3 𝐷) βˆ’1 = +𝐼 (+TR) (𝜏 2 𝐷) 𝐼 (𝜏 2 𝐷) βˆ’1 = βˆ’πΌ (𝜏 2 𝐷) 𝐼 (𝜏 2 𝐷) βˆ’1 = βˆ’πΌ

  5. . ) (πœ” 1 (𝑒) (ordin.) = +𝐼 2 (chiral) Symmetries Building blocks πœ” 2 (𝑒)) 0 (+PH) . πœ” 2 (𝑒)) = ( Fundamental equation Quantum Symmetries of Classical and Quantum Spin Systems Da Capo Bulk-Edge Correspondence 𝐷 𝐼 𝐷 = 𝐼 = βˆ’πΌ (-PH) Maxwell’s Equations in Linear Media 𝑁 𝑦 (𝑒) (+PH) 𝐷 𝐼 𝐷 = 𝐼 = βˆ’πΌ (ordin.) = +𝐼 2 (chiral) Symmetries States: ( Classical Building blocks 𝑁 𝑧 (𝑒)) ) (𝑁 𝑦 (𝑒) 0 0 𝑁 𝑧 (𝑒)) = ( Fundamental equation Topological Classifjcation 0 Quantum vs. Classical . . . . . . . . . . . . . . . . . . . . . . . . (-PH) . . . . . . . . . . . . . . βˆ’ i πœ• 0 βˆ’ i πœ• 0 i πœ– i πœ– + i πœ• 0 + i πœ• 0 πœ–π‘’ (𝑁 𝑦 (𝑒) πœ–π‘’ (πœ” 1 (𝑒) Hamiltonian: 𝐼 = πœ• 0 𝜏 2 Hamiltonian: 𝐼 = πœ• 0 𝜏 2 = 𝐼 βˆ— States: ( πœ” 1 (𝑒) 𝑁 𝑧 (𝑒) ) ∈ β„‹ ℝ = ℝ 2 πœ” 2 (𝑒) ) ∈ β„‹ β„‚ = β„‚ 2 𝜏 1,3 𝐼 𝜏 βˆ’1 1,3 = βˆ’πΌ 𝜏 1,3 𝐼 𝜏 βˆ’1 1,3 = βˆ’πΌ 𝜏 2 𝐼 𝜏 βˆ’1 𝜏 2 𝐼 𝜏 βˆ’1 (𝜏 1,3 𝐷) 𝐼 (𝜏 1,3 𝐷) βˆ’1 = +𝐼 (+TR) (𝜏 1,3 𝐷) 𝐼 (𝜏 1,3 𝐷) βˆ’1 = +𝐼 (+TR) (𝜏 2 𝐷) 𝐼 (𝜏 2 𝐷) βˆ’1 = βˆ’πΌ (𝜏 2 𝐷) 𝐼 (𝜏 2 𝐷) βˆ’1 = βˆ’πΌ

  6. . ) (πœ” 1 (𝑒) (ordin.) = +𝐼 2 (chiral) Symmetries Building blocks πœ” 2 (𝑒)) 0 (+PH) . πœ” 2 (𝑒)) = ( Fundamental equation Quantum Symmetries of Classical and Quantum Spin Systems Da Capo Bulk-Edge Correspondence 𝐷 𝐼 𝐷 = 𝐼 = βˆ’πΌ (-PH) Maxwell’s Equations in Linear Media 𝑁 𝑦 (𝑒) (+PH) 𝐷 𝐼 𝐷 = 𝐼 = βˆ’πΌ (ordin.) = +𝐼 2 (chiral) Symmetries? States: ( Classical Building blocks 𝑁 𝑧 (𝑒)) ) (𝑁 𝑦 (𝑒) 0 0 𝑁 𝑧 (𝑒)) = ( Fundamental equation Topological Classifjcation 0 Quantum vs. Classical . . . . . . . . . . . . . . . . . . . . . . . . (-PH) . . . . . . . . . . . . . . βˆ’ i πœ• 0 βˆ’ i πœ• 0 i πœ– i πœ– + i πœ• 0 + i πœ• 0 πœ–π‘’ (𝑁 𝑦 (𝑒) πœ–π‘’ (πœ” 1 (𝑒) Hamiltonian: 𝐼 = πœ• 0 𝜏 2 Hamiltonian: 𝐼 = πœ• 0 𝜏 2 = 𝐼 βˆ— States: ( πœ” 1 (𝑒) 𝑁 𝑧 (𝑒) ) ∈ β„‹ ℝ = ℝ 2 πœ” 2 (𝑒) ) ∈ β„‹ β„‚ = β„‚ 2 𝜏 1,3 𝐼 𝜏 βˆ’1 1,3 = βˆ’πΌ 𝜏 1,3 𝐼 𝜏 βˆ’1 1,3 = βˆ’πΌ 𝜏 2 𝐼 𝜏 βˆ’1 𝜏 2 𝐼 𝜏 βˆ’1 (𝜏 1,3 𝐷) 𝐼 (𝜏 1,3 𝐷) βˆ’1 = +𝐼 (+TR) (𝜏 1,3 𝐷) 𝐼 (𝜏 1,3 𝐷) βˆ’1 = +𝐼 (+TR) (𝜏 2 𝐷) 𝐼 (𝜏 2 𝐷) βˆ’1 = βˆ’πΌ (𝜏 2 𝐷) 𝐼 (𝜏 2 𝐷) βˆ’1 = βˆ’πΌ

  7. . 0 (chiral) Symmetries Building blocks πœ” 2 (𝑒)) ) (πœ” 1 (𝑒) 0 . = +𝐼 Fundamental equation Quantum Symmetries of Classical and Quantum Spin Systems Da Capo Bulk-Edge Correspondence Topological Classifjcation Maxwell’s Equations in Linear Media 2 (ordin.) . 𝑁 𝑧 (𝑒)) (+PH) 𝐷 𝐼 𝐷 = 𝐼 = βˆ’πΌ (???) (???) Symmetries 𝑁 𝑦 (𝑒) Building blocks ) (𝑁 𝑦 (𝑒) 𝐷 𝐼 𝐷 = 𝐼 = βˆ’πΌ 0 0 𝑁 𝑧 (𝑒)) = ( Fundamental equation Classical (-PH) (+PH) Quantum vs. Classical πœ” 2 (𝑒)) = ( . . . . . . . . . . . . . . . . . . . . . . . (-PH) . . . . . . . . . . . . . . βˆ’ i πœ• 0 βˆ’ i πœ• 0 i πœ– i πœ– + i πœ• 0 + i πœ• 0 πœ–π‘’ (𝑁 𝑦 (𝑒) πœ–π‘’ (πœ” 1 (𝑒) Hamiltonian: 𝐼 = πœ• 0 𝜏 2 Hamiltonian: 𝐼 = πœ• 0 𝜏 2 = 𝐼 βˆ— States: ( πœ” 1 (𝑒) States: ( 𝑁 𝑧 (𝑒) ) ∈ β„‹ ℝ = ℝ 2 πœ” 2 (𝑒) ) ∈ β„‹ β„‚ = β„‚ 2 𝜏 1,3 𝐼 𝜏 βˆ’1 1,3 = βˆ’πΌ 𝜏 1,3 𝐼 𝜏 βˆ’1 1,3 = βˆ’πΌ ( i 𝜏 2 ) 𝐼 ( i 𝜏 2 ) βˆ’1 = +𝐼 𝜏 2 𝐼 𝜏 βˆ’1 (𝜏 1,3 𝐷) 𝐼 (𝜏 1,3 𝐷) βˆ’1 = +𝐼 (+TR) (𝜏 1,3 𝐷) 𝐼 (𝜏 1,3 𝐷) βˆ’1 = +𝐼 (+TR) (𝜏 2 𝐷) 𝐼 (𝜏 2 𝐷) βˆ’1 = βˆ’πΌ (𝜏 2 𝐷) 𝐼 (𝜏 2 𝐷) βˆ’1 = βˆ’πΌ

  8. . Quantum πœ” 2 (𝑒)) ) (πœ” 1 (𝑒) 0 0 πœ” 2 (𝑒)) = ( . Symmetries of Classical and Quantum Spin Systems Symmetries Da Capo Bulk-Edge Correspondence Topological Classifjcation Maxwell’s Equations in Linear Media Quantum vs. Classical . Building blocks (chiral) . 0 Symmetries 𝑁 𝑦 (𝑒) Building blocks 𝑁 𝑧 (𝑒)) ) (𝑁 𝑦 (𝑒) 0 𝑁 𝑧 (𝑒)) = ( 2 Fundamental equation Classical (-PH) (+PH) 𝐷 𝐼 𝐷 = 𝐼 = βˆ’πΌ (ordin.) = +𝐼 . Fundamental equation . . . . . . . . . . . . . . . . . . . . ⇝ classical spin transformations . . . . . . . . . . . . . . . βˆ’ i πœ• 0 βˆ’ i πœ• 0 i πœ– i πœ– + i πœ• 0 + i πœ• 0 πœ–π‘’ (𝑁 𝑦 (𝑒) πœ–π‘’ (πœ” 1 (𝑒) Hamiltonian: 𝐼 = πœ• 0 𝜏 2 Hamiltonian: 𝐼 = πœ• 0 𝜏 2 = 𝐼 βˆ— States: ( πœ” 1 (𝑒) States: ( 𝑁 𝑧 (𝑒) ) ∈ β„‹ ℝ = ℝ 2 πœ” 2 (𝑒) ) ∈ β„‹ β„‚ = β„‚ 2 𝜏 1,3 𝐼 𝜏 βˆ’1 1,3 = βˆ’πΌ 𝐷 not defjned on β„‹ ℝ = ℝ 2 𝜏 1 , i 𝜏 2 and 𝜏 3 are real matrices 𝜏 2 𝐼 𝜏 βˆ’1 (𝜏 1,3 𝐷) 𝐼 (𝜏 1,3 𝐷) βˆ’1 = +𝐼 (+TR) (𝜏 2 𝐷) 𝐼 (𝜏 2 𝐷) βˆ’1 = βˆ’πΌ

  9. . 0 (chiral) Symmetries Building blocks πœ” 2 (𝑒)) ) (πœ” 1 (𝑒) 0 . = +𝐼 Fundamental equation Quantum Symmetries of Classical and Quantum Spin Systems Da Capo Bulk-Edge Correspondence Topological Classifjcation Maxwell’s Equations in Linear Media 2 (ordin.) . 𝑁 𝑧 (𝑒)) (+PH) 𝐷 𝐼 𝐷 = 𝐼 = βˆ’πΌ (???) (???) Symmetries 𝑁 𝑦 (𝑒) Building blocks ) (𝑁 𝑦 (𝑒) 𝐷 𝐼 𝐷 = 𝐼 = βˆ’πΌ 0 0 𝑁 𝑧 (𝑒)) = ( Fundamental equation Classical (-PH) (+PH) Quantum vs. Classical πœ” 2 (𝑒)) = ( . . . . . . . . . . . . . . . . . . . . . . . (-PH) . . . . . . . . . . . . . . βˆ’ i πœ• 0 βˆ’ i πœ• 0 i πœ– i πœ– + i πœ• 0 + i πœ• 0 πœ–π‘’ (𝑁 𝑦 (𝑒) πœ–π‘’ (πœ” 1 (𝑒) Hamiltonian: 𝐼 = πœ• 0 𝜏 2 Hamiltonian: 𝐼 = πœ• 0 𝜏 2 = 𝐼 βˆ— States: ( πœ” 1 (𝑒) States: ( 𝑁 𝑧 (𝑒) ) ∈ β„‹ ℝ = ℝ 2 πœ” 2 (𝑒) ) ∈ β„‹ β„‚ = β„‚ 2 𝜏 1,3 𝐼 𝜏 βˆ’1 1,3 = βˆ’πΌ 𝜏 1,3 𝐼 𝜏 βˆ’1 1,3 = βˆ’πΌ ( i 𝜏 2 ) 𝐼 ( i 𝜏 2 ) βˆ’1 = +𝐼 𝜏 2 𝐼 𝜏 βˆ’1 (𝜏 1,3 𝐷) 𝐼 (𝜏 1,3 𝐷) βˆ’1 = +𝐼 (+TR) (𝜏 1,3 𝐷) 𝐼 (𝜏 1,3 𝐷) βˆ’1 = +𝐼 (+TR) (𝜏 2 𝐷) 𝐼 (𝜏 2 𝐷) βˆ’1 = βˆ’πΌ (𝜏 2 𝐷) 𝐼 (𝜏 2 𝐷) βˆ’1 = βˆ’πΌ

  10. . Quantum ) (πœ” 1 (𝑒) 0 0 πœ” 2 (𝑒)) = ( . Fundamental equation Symmetries of Classical and Quantum Spin Systems Building blocks Da Capo Bulk-Edge Correspondence Topological Classifjcation Maxwell’s Equations in Linear Media Quantum vs. Classical . πœ” 2 (𝑒)) Symmetries . ) (𝑁 𝑦 (𝑒) (???) Symmetries 𝑁 𝑦 (𝑒) States: ( Building blocks 𝑁 𝑧 (𝑒)) 0 (ordin.) 0 𝑁 𝑧 (𝑒)) = ( Fundamental equation Classical (+PH) 𝐷 (-PH) . (???) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . βˆ’ i πœ• 0 βˆ’ i πœ• 0 i πœ– i πœ– + i πœ• 0 + i πœ• 0 πœ–π‘’ (𝑁 𝑦 (𝑒) πœ–π‘’ (πœ” 1 (𝑒) Hamiltonian: 𝐼 = πœ• 0 𝜏 2 Hamiltonian: 𝐼 = πœ• 0 𝜏 2 = 𝐼 βˆ— States: ( πœ” 1 (𝑒) 𝑁 𝑧 (𝑒) ) ∈ β„‹ ℝ = ℝ 2 πœ” 2 (𝑒) ) ∈ β„‹ β„‚ = β„‚ 2 π‘Š ℝ 𝑉 1 = 𝜏 1 (chiral) π‘ˆ 1 = 𝜏 1 𝐷 (+TR) 1 = 𝜏 1 2 = i 𝜏 2 (???) π‘Š ℝ 𝑉 2 = 𝜏 2 π‘ˆ 2 = 𝜏 2 𝐷 π‘Š ℝ 𝑉 3 = 𝜏 3 (chiral) π‘ˆ 3 = 𝜏 3 𝐷 (+TR) 3 = 𝜏 3

  11. . Quantum vs. Classical . . . . . . . . . . Maxwell’s Equations in Linear Media . Topological Classifjcation Bulk-Edge Correspondence Da Capo Consider Classical Equation on Complex Hilbert Space Cartan-Altland-Zirnbauer classifjcation scheme for Topological only work for operators acting on complex Hilbert spaces Two Ways to Work With Complex Hilbert Spaces 1 Complexify classical equations (introduces unphysical degrees of freedom) 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Insulators (and many other techniques from quantum mechanics) Work with complex Ξ¨ which represent real states 𝑁 = 2 Re Ξ¨ (establish 1-to-1 correspondence β„‹ β„‚ ↔ β„‹ ℝ )

  12. . Quantum vs. Classical . . . . . . . . . . Maxwell’s Equations in Linear Media . Topological Classifjcation Bulk-Edge Correspondence Da Capo Consider Classical Equation on Complex Hilbert Space Cartan-Altland-Zirnbauer classifjcation scheme for Topological only work for operators acting on complex Hilbert spaces Two Ways to Work With Complex Hilbert Spaces 1 Complexify classical equations (introduces unphysical degrees of freedom) 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Insulators (and many other techniques from quantum mechanics) Work with complex Ξ¨ which represent real states 𝑁 = 2 Re Ξ¨ (establish 1-to-1 correspondence β„‹ β„‚ ↔ β„‹ ℝ )

  13. . 0 . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo . Complexifjcation Fundamental equation 𝑁 𝑧 (𝑒)) = ( 0 ) (𝑁 𝑦 (𝑒) . 𝑁 𝑧 (𝑒)) Building blocks Symmetries Classical Fundamental equation 𝑁 𝑧 (𝑒)) = ( 0 0 ) (𝑁 𝑦 (𝑒) 𝑁 𝑧 (𝑒)) Building blocks States: ( 𝑁 𝑦 (𝑒) Symmetries . Complexifying the Classical Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . βˆ’ i πœ• 0 βˆ’ i πœ• 0 i πœ– i πœ– + i πœ• 0 + i πœ• 0 πœ–π‘’ (𝑁 𝑦 (𝑒) πœ–π‘’ (𝑁 𝑦 (𝑒) Hamiltonian: 𝐼 = πœ• 0 𝜏 2 Hamiltonian: 𝐼 = πœ• 0 𝜏 2 = 𝐼 βˆ— 𝑁 𝑧 (𝑒) ) ∈ β„‹ ℝ = ℝ 2 States: 𝑁 = Ξ¨ + + Ξ¨ βˆ’ ∈ β„‹ ℝ βŠ‚ β„‹ β„‚ π‘Š β„‚ π‘Š ℝ 1 = ??? 1 = 𝜏 1 2 = i 𝜏 2 π‘Š β„‚ π‘Š ℝ 2 = ??? π‘Š β„‚ π‘Š ℝ 3 = ??? 3 = 𝜏 3

  14. . ) (𝑁 𝑦 (𝑒) . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence . Complexifying the Classical Equations Complexifjcation Fundamental equation 𝑁 𝑧 (𝑒)) = ( 0 0 𝑁 𝑧 (𝑒)) . 0 Symmetries 𝑁 𝑦 (𝑒) States: ( Building blocks 𝑁 𝑧 (𝑒)) ) (𝑁 𝑦 (𝑒) 0 Building blocks 𝑁 𝑧 (𝑒)) = ( Fundamental equation Classical ordin. vs. -PH none vs. +PH Symmetries . Da Capo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . βˆ’ i πœ• 0 βˆ’ i πœ• 0 i πœ– i πœ– + i πœ• 0 + i πœ• 0 πœ–π‘’ (𝑁 𝑦 (𝑒) πœ–π‘’ (𝑁 𝑦 (𝑒) Hamiltonian: 𝐼 = πœ• 0 𝜏 2 Hamiltonian: 𝐼 = πœ• 0 𝜏 2 = 𝐼 βˆ— 𝑁 𝑧 (𝑒) ) ∈ β„‹ ℝ = ℝ 2 States: 𝑁 = Ξ¨ + + Ξ¨ βˆ’ ∈ β„‹ ℝ βŠ‚ β„‹ β„‚ π‘Š ℝ 𝟚 ∣ β„‹ ℝ = 𝐷 ∣ β„‹ ℝ 1 = 𝜏 1 2 = i 𝜏 2 π‘Š ℝ 𝜏 1,3 ∣ β„‹ ℝ = 𝜏 1,3 𝐷 ∣ β„‹ ℝ chiral vs. +TR π‘Š ℝ i 𝜏 2 ∣ β„‹ ℝ = i 𝜏 2 𝐷 ∣ β„‹ ℝ 3 = 𝜏 3

  15. . 𝑁 𝑧 (𝑒)) . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation . Da Capo Complexifying the Classical Equations Complexifjcation Fundamental equation 𝑁 𝑧 (𝑒)) = ( 0 0 ) (𝑁 𝑦 (𝑒) Building blocks . 0 Symmetries 𝑁 𝑦 (𝑒) States: ( Building blocks 𝑁 𝑧 (𝑒)) ) (𝑁 𝑦 (𝑒) 0 Symmetries 𝑁 𝑧 (𝑒)) = ( Fundamental equation Classical topological classifjcations!? β€’ Difgerent choices β‡’ difgerent β€’ Redundant symmetry operations . Bulk-Edge Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . βˆ’ i πœ• 0 βˆ’ i πœ• 0 i πœ– i πœ– + i πœ• 0 + i πœ• 0 πœ–π‘’ (𝑁 𝑦 (𝑒) πœ–π‘’ (𝑁 𝑦 (𝑒) Hamiltonian: 𝐼 = πœ• 0 𝜏 2 Hamiltonian: 𝐼 = πœ• 0 𝜏 2 = 𝐼 βˆ— 𝑁 𝑧 (𝑒) ) ∈ β„‹ ℝ = ℝ 2 States: 𝑁 = Ξ¨ + + Ξ¨ βˆ’ ∈ β„‹ ℝ βŠ‚ β„‹ β„‚ π‘Š ℝ 1 = 𝜏 1 2 = i 𝜏 2 π‘Š ℝ π‘Š ℝ 3 = 𝜏 3

  16. . Quantum vs. Classical . . . . . . . . . . Maxwell’s Equations in Linear Media . Topological Classifjcation Bulk-Edge Correspondence Da Capo Consider Classical Equation on Complex Hilbert Space Cartan-Altland-Zirnbauer classifjcation scheme for Topological only work for operators acting on complex Hilbert spaces Two Ways to Work With Complex Hilbert Spaces 1 Complexify classical equations (introduces unphysical degrees of freedom) 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Insulators (and many other techniques from quantum mechanics) Work with complex Ξ¨ which represent real states 𝑁 = 2 Re Ξ¨ (establish 1-to-1 correspondence β„‹ β„‚ ↔ β„‹ ℝ )

  17. . Quantum vs. Classical . . . . . . . . . . Maxwell’s Equations in Linear Media . Topological Classifjcation Bulk-Edge Correspondence Da Capo Consider Classical Equation on Complex Hilbert Space Cartan-Altland-Zirnbauer classifjcation scheme for Topological only work for operators acting on complex Hilbert spaces Two Ways to Work With Complex Hilbert Spaces 1 Complexify classical equations (introduces unphysical degrees of freedom) 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Insulators (and many other techniques from quantum mechanics) Work with complex Ξ¨ which represent real states 𝑁 = 2 Re Ξ¨ (establish 1-to-1 correspondence β„‹ β„‚ ↔ β„‹ ℝ )

  18. . 0 . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation . Da Capo SchrΓΆdinger Formalism of Classical Spin Waves Complexifjcation Fundamental equation 𝑁 𝑧 (𝑒)) = ( 0 ) (𝑁 𝑦 (𝑒) . 𝑁 𝑧 (𝑒)) Building blocks Symmetries Classical Fundamental equation 𝑁 𝑧 (𝑒)) = ( 0 0 ) (𝑁 𝑦 (𝑒) 𝑁 𝑧 (𝑒)) Building blocks States: ( 𝑁 𝑦 (𝑒) Symmetries . Bulk-Edge Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . βˆ’ i πœ• 0 βˆ’ i πœ• 0 i πœ– i πœ– + i πœ• 0 + i πœ• 0 πœ–π‘’ (𝑁 𝑦 (𝑒) πœ–π‘’ (𝑁 𝑦 (𝑒) Hamiltonian: 𝐼 = πœ• 0 𝜏 2 Hamiltonian: 𝐼 = πœ• 0 𝜏 2 = 𝐼 βˆ— 𝑁 𝑧 (𝑒) ) ∈ β„‹ ℝ = ℝ 2 States: 𝑁 = Ξ¨ + + Ξ¨ βˆ’ ∈ β„‹ ℝ βŠ‚ β„‹ β„‚ π‘Š ℝ 𝟚 ∣ β„‹ ℝ = 𝐷 ∣ β„‹ ℝ 1 = 𝜏 1 2 = i 𝜏 2 π‘Š ℝ 𝜏 1,3 ∣ β„‹ ℝ = 𝜏 1,3 𝐷 ∣ β„‹ ℝ π‘Š ℝ i 𝜏 2 ∣ β„‹ ℝ = i 𝜏 2 𝐷 ∣ β„‹ ℝ 3 = 𝜏 3

  19. . 0 . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo . πœ• > 0 Representation Fundamental equation πœ” +,2 (𝑒)) = ( 0 ) (πœ” +,1 (𝑒) . πœ” +,2 (𝑒)) Building blocks Symmetries Classical Fundamental equation 𝑁 𝑧 (𝑒)) = ( 0 0 ) (𝑁 𝑦 (𝑒) 𝑁 𝑧 (𝑒)) Building blocks States: ( 𝑁 𝑦 (𝑒) Symmetries . SchrΓΆdinger Formalism of Classical Spin Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . βˆ’ i πœ• 0 βˆ’ i πœ• 0 i πœ– i πœ– + i πœ• 0 + i πœ• 0 πœ–π‘’ (𝑁 𝑦 (𝑒) πœ–π‘’ (πœ” +,1 (𝑒) Hamiltonian: 𝐼 = πœ• 0 𝜏 2 Hamiltonian: 𝐼 = πœ• 0 𝜏 2 = 𝐼 βˆ— States: 𝑁 = 2 Re Ξ¨ + ∈ β„‹ ℝ 𝑁 𝑧 (𝑒) ) ∈ β„‹ ℝ = ℝ 2 π‘Š β„‚ π‘Š ℝ 1 = ??? 1 = 𝜏 1 2 = i 𝜏 2 π‘Š β„‚ π‘Š ℝ 2 = ??? π‘Š β„‚ π‘Š ℝ 3 = ??? 3 = 𝜏 3

  20. . Quantum vs. Classical . . . . . . . . . . Maxwell’s Equations in Linear Media . Topological Classifjcation Bulk-Edge Correspondence Da Capo SchrΓΆdinger Formalism of Classical Spin Waves Eliminate superfmuous degree of freedom in complexifjed equations 𝑁(𝑒) ⏟ real wave Ξ¨(𝑒) ⏟ complex πœ• > 0 wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-to-1 correspondence ⇝ Systematically identify ℝ 2 β‰… β„‚ = 2 Re

  21. . . . . . . . . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo SchrΓΆdinger Formalism of Classical Spin Waves Eliminate superfmuous degree of freedom in complexifjed equations 𝑐) . . . . . . . . . . . . . . . . . . . . 1-to-1 correspondence . . . . . ⇝ Systematically identify ℝ 2 β‰… β„‚ 𝑁(𝑒) = ( cos πœ• 0 𝑒 βˆ’ sin πœ• 0 𝑒 sin πœ• 0 𝑒 cos πœ• 0 𝑒 ) (𝑏 = 2 Re Ξ¨(𝑒) = 2 Re ((𝑏 βˆ’ i 𝑐) e βˆ’ i πœ• 0 𝑒 Ξ¨ + ) where Ξ¨ + = ( 1 + i ) is the eigenvector of 𝐼 = πœ• 0 𝜏 2 to +πœ• 0 > 0 .

  22. . Maxwell’s Equations in Linear Media . . . . . . . . . . Quantum vs. Classical Topological Classifjcation . Bulk-Edge Correspondence Da Capo SchrΓΆdinger Formalism of Classical Spin Waves πœ• > 0 Representation Fundamental equation Building blocks Symmetries Classical Fundamental equation Building blocks Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . i πœ– i πœ– πœ–π‘’ Ξ¨(𝑒) = πœ• 0 𝜏 2 Ξ¨(𝑒) πœ–π‘’ 𝑁(𝑒) = πœ• 0 𝜏 2 𝑁(𝑒) Hamiltonian: 𝐼 = πœ• 0 𝜏 2 = 𝐼 βˆ— Hamiltonian: 𝐼 = πœ• 0 𝜏 2 States: Ξ¨(𝑒) ∈ β„‹ + = span β„‚ {( 1 States: 𝑁(𝑒) = 2 Re Ξ¨(𝑒) ∈ ℝ 2 + i )} π‘Š β„‚ π‘Š ℝ 1 = ??? 1 = 𝜏 1 2 = i 𝜏 2 π‘Š β„‚ π‘Š ℝ 2 = ??? π‘Š β„‚ π‘Š ℝ 3 = ??? 3 = 𝜏 3

  23. . Bulk-Edge Correspondence . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Da Capo . Translating Real Symmetries to πœ• > 0 Representation Requirements 1 2 maps πœ• > 0 waves onto πœ• > 0 waves. Consequences 1 π‘˜ (unitary) ( anti unitary) 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 𝑁 = 2 Re Ξ¨ , then π‘˜ = {π‘Š ℝ π‘˜ 𝑁 = 2 Re (π‘Š β„‚ π‘Š β„‚ π‘Š ℝ π‘˜ Ξ¨) π‘Š ℝ π‘˜ 𝐷 π‘Š β„‚ π‘˜ is a (anti)unitary on β„‹ + , i. e. it π‘Š β„‚ π‘˜ must commute with 𝐼 = πœ• 0 𝜏 2

  24. . Bulk-Edge Correspondence . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Da Capo . Translating Real Symmetries to πœ• > 0 Representation Requirements 1 2 maps πœ• > 0 waves onto πœ• > 0 waves. Consequences 1 π‘˜ (unitary) ( anti unitary) 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 𝑁 = 2 Re Ξ¨ , then π‘˜ = {π‘Š ℝ π‘˜ 𝑁 = 2 Re (π‘Š β„‚ π‘Š β„‚ π‘Š ℝ π‘˜ Ξ¨) π‘Š ℝ π‘˜ 𝐷 π‘Š β„‚ π‘˜ is a (anti)unitary on β„‹ + , i. e. it π‘Š β„‚ π‘˜ must commute with 𝐼 = πœ• 0 𝜏 2

  25. . . . . . . . . . . . . Quantum vs. Classical . Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Translating Real Symmetries to πœ• > 0 Representation Real Symmetry Complex Representative TI Classifjcation +TR ordinary . . . . . . . . . . . . . . . . . . . . . +TR . . . . . . π‘Š ℝ π‘Š β„‚ 1 = 𝜏 1 1 = 𝜏 1 𝐷 2 = i 𝜏 2 2 = i 𝜏 2 π‘Š ℝ π‘Š β„‚ π‘Š ℝ π‘Š β„‚ 3 = 𝜏 3 3 = 𝜏 3 𝐷

  26. . Bulk-Edge Correspondence . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Da Capo . Translating Real Symmetries to πœ• > 0 Representation πœ• > 0 Representation Fundamental equation Building blocks Symmetries (+TR) (ordinary) (+TR) Classical Fundamental equation Building blocks Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i πœ– i πœ– πœ–π‘’ Ξ¨(𝑒) = πœ• 0 𝜏 2 Ξ¨(𝑒) πœ–π‘’ 𝑁(𝑒) = πœ• 0 𝜏 2 𝑁(𝑒) Hamiltonian: 𝐼 = πœ• 0 𝜏 2 = 𝐼 βˆ— Hamiltonian: 𝐼 = πœ• 0 𝜏 2 States: Ξ¨(𝑒) ∈ β„‹ + = span β„‚ {( 1 States: 𝑁(𝑒) = 2 Re Ξ¨(𝑒) ∈ ℝ 2 + i )} π‘Š β„‚ π‘Š ℝ 1 = 𝜏 1 𝐷 1 = 𝜏 1 2 = i 𝜏 2 2 = i 𝜏 2 π‘Š β„‚ π‘Š ℝ π‘Š β„‚ π‘Š ℝ 3 = 𝜏 3 𝐷 3 = 𝜏 3

  27. . Maxwell’s Equations in Linear Media . . . . . . . . . . Quantum vs. Classical Topological Classifjcation . Bulk-Edge Correspondence Da Capo Translating Real Symmetries to πœ• > 0 Representation Moral of the Story Not all β€œquantum” symmetries are symmetries of the classical equations β€œSchrΓΆdinger” form of classical equations necessary to identify the nature of these symmetries in the context of TIs 𝐷 is not a meaningful symmetry of the β€œSchrΓΆdinger” form of the classical equations! No fermionic time-reversal symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ideas apply to all classical wave equations! ⇝ Incompatible with the real-valuedness of classical waves

  28. . . . . . . . . . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo . . . . . . . . . . . . . . . . . . . . . . . . Applies directly to vacuum Maxwell equations

  29. . Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Bulk-Edge Correspondence . Da Capo Spin ⟢ In Vacuo Maxwell Equations ⟢ ⟢ ⟢ Same Strategy 1 Complexify classical equations 2 Eliminate superfmuous states in complex Hilbert space 3 . . . . . . . . . . . . . . . . . . . . . . . . . Identify complex implementation of the three symmetries . . . . Rot = βˆ’πœ 2 βŠ— βˆ‡ Γ— 𝐼 = πœ• 0 𝜏 2 π‘Š ℝ π‘Š ℝ 1,3 = 𝜏 1,3 1,3 = 𝜏 1,3 βŠ— 𝟚 2 = i 𝜏 2 2 = i 𝜏 2 βŠ— 𝟚 π‘Š ℝ π‘Š ℝ

  30. . 0 . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo SchrΓΆdinger Formalism of In Vacuo Maxwell Equations . Fundamental equation πœ” 𝐼 (𝑒)) = ( 0 . ) (πœ” 𝐹 (𝑒) πœ” 𝐼 (𝑒)) Building blocks States: Ξ¨(𝑒) ∈ 𝑀 2 (ℝ 3 , β„‚ 6 ) Symmetries (+TR) (ordinary) (+TR) Classical Fundamental equation 0 0 Building blocks Symmetries . Complexifjcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . πœ–π‘’ ( E (𝑒) + i βˆ‡ Γ— ) ( E (𝑒) + i βˆ‡ Γ— i πœ– i πœ– H (𝑒)) = ( βˆ’ i βˆ‡ Γ— H (𝑒)) βˆ’ i βˆ‡ Γ— πœ–π‘’ (πœ” 𝐹 (𝑒) Hamiltonian: 𝑁 = βˆ’πœ 2 βŠ— βˆ‡ Γ— = 𝑁 βˆ— Hamiltonian: 𝑁 = βˆ’πœ 2 βŠ— βˆ‡ Γ— States: ( E (𝑒) H (𝑒) ) ∈ 𝑀 2 (ℝ 3 , ℝ 6 ) π‘Š ℝ π‘Š β„‚ 1 = 𝜏 1 βŠ— 𝟚 1 = (𝜏 1 βŠ— 𝟚) 𝐷 2 = i 𝜏 2 βŠ— 𝟚 2 = i 𝜏 2 βŠ— 𝟚 π‘Š ℝ π‘Š β„‚ π‘Š ℝ π‘Š β„‚ 3 = 𝜏 3 βŠ— 𝟚 3 = (𝜏 3 βŠ— 𝟚) 𝐷

  31. . Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Bulk-Edge Correspondence . Da Capo SchrΓΆdinger Formalism of In Vacuo Maxwell Equations Representing real, transversal EM Fields as complex πœ• > 0 waves ⏟ ⏟ ⏟ ⏟ ⏟ real wave Ξ¨(𝑒) ⏟ complex πœ• > 0 wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( E (𝑒), H (𝑒)) = 2 Re ⟹ Ξ¨ ∈ β„‹ + = { complex πœ• > 0 waves } .

  32. . πœ” 𝐼 (𝑒)) = ( . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo SchrΓΆdinger Formalism of In Vacuo Maxwell Equations . Fundamental equation 0 . 0 ) (πœ” 𝐹 (𝑒) πœ” 𝐼 (𝑒)) Building blocks Symmetries (+TR) (ordinary) (+TR) Classical Fundamental equation 0 0 Building blocks Symmetries . πœ• > 0 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . πœ–π‘’ ( E (𝑒) + i βˆ‡ Γ— ) ( E (𝑒) + i βˆ‡ Γ— i πœ– i πœ– H (𝑒)) = ( βˆ’ i βˆ‡ Γ— H (𝑒)) βˆ’ i βˆ‡ Γ— πœ–π‘’ (πœ” 𝐹 (𝑒) Hamiltonian: 𝑁 = βˆ’πœ 2 βŠ— βˆ‡ Γ— = 𝑁 βˆ— Hamiltonian: 𝑁 = βˆ’πœ 2 βŠ— βˆ‡ Γ— States: ( E (𝑒) H (𝑒) ) ∈ 𝑀 2 (ℝ 3 , ℝ 6 ) States: Ξ¨(𝑒) ∈ { compl. πœ• > 0 waves } π‘Š ℝ π‘Š β„‚ 1 = 𝜏 1 βŠ— 𝟚 1 = (𝜏 1 βŠ— 𝟚) 𝐷 2 = i 𝜏 2 βŠ— 𝟚 2 = i 𝜏 2 βŠ— 𝟚 π‘Š ℝ π‘Š β„‚ π‘Š ℝ π‘Š β„‚ 3 = 𝜏 3 βŠ— 𝟚 3 = (𝜏 3 βŠ— 𝟚) 𝐷

  33. . SchrΓΆdinger Formalism of In Vacuo Maxwell Equations . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Real Symmetry . Complex Representative TI Classifjcation Meaning +TR Flips helicity and arrow of time ordinary Dual symmetry +TR Ordinary EM time-reversal . . . . . . . . . . . . . . . . . Media selectively break or preserve these symmetries! . . . . . . . . . . . . . . π‘Š ℝ π‘Š β„‚ 1 = 𝜏 1 βŠ— 𝟚 1 = (𝜏 1 βŠ—πŸš) 𝐷 2 = i 𝜏 2 βŠ— 𝟚 2 = i 𝜏 2 βŠ— 𝟚 π‘Š ℝ π‘Š β„‚ π‘Š ℝ π‘Š β„‚ 3 = 𝜏 3 βŠ— 𝟚 3 = (𝜏 3 βŠ—πŸš) 𝐷

  34. . 0 . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo SchrΓΆdinger Formalism of In Vacuo Maxwell Equations . Fundamental equation πœ” 𝐼 (𝑒)) = ( 0 . ) (πœ” 𝐹 (𝑒) πœ” 𝐼 (𝑒)) Building blocks States: Ξ¨(𝑒) ∈ { compl. πœ• > 0 waves } Symmetries (+TR) (ordinary) (+TR) Classical Fundamental equation 0 0 Building blocks Symmetries . πœ• > 0 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . πœ–π‘’ ( E (𝑒) + i βˆ‡ Γ— ) ( E (𝑒) + i βˆ‡ Γ— i πœ– i πœ– H (𝑒)) = ( βˆ’ i βˆ‡ Γ— H (𝑒)) βˆ’ i βˆ‡ Γ— πœ–π‘’ (πœ” 𝐹 (𝑒) Hamiltonian: 𝑁 = βˆ’πœ 2 βŠ— βˆ‡ Γ— = 𝑁 βˆ— Hamiltonian: 𝑁 = βˆ’πœ 2 βŠ— βˆ‡ Γ— States: ( E (𝑒) H (𝑒) ) ∈ 𝑀 2 (ℝ 3 , ℝ 6 ) π‘Š ℝ π‘Š β„‚ 1 = 𝜏 1 βŠ— 𝟚 1 = (𝜏 1 βŠ— 𝟚) 𝐷 2 = i 𝜏 2 βŠ— 𝟚 2 = i 𝜏 2 βŠ— 𝟚 π‘Š ℝ π‘Š β„‚ π‘Š ℝ π‘Š β„‚ 3 = 𝜏 3 βŠ— 𝟚 3 = (𝜏 3 βŠ— 𝟚) 𝐷

  35. . Maxwell’s Equations in Linear Media . . . . . . . . . . Quantum vs. Classical Topological Classifjcation . Bulk-Edge Correspondence Da Capo 1 Quantum vs. Classical 2 Maxwell’s Equations in Linear Media 3 Topological Classifjcation of Electromagnetic Media 4 Obstacles For Proving the Photonic Bulk-Edge Correspondence 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Da Capo

  36. . Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Bulk-Edge Correspondence . Da Capo Main Messages of This Talk 1 Rewrite Maxwell’s equations in the form of a SchrΓΆdinger equation. De Nittis & L., Annals of Physics 396 , pp. 221–260, 2018 2 Classify electromagnetic media using the Cartan-Altland-Zirnbauer scheme. De Nittis & L., arXiv:1710.08104, 2017; De Nittis & L., arXiv:1806.07783, 2018 3 Adapt existing techniques to prove bulk-boundary correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . … in progress

  37. . Da Capo . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Maxwell’s Equations in Linear, Dispersionless Media . πœ“ 𝐹𝐼 πœ“ 𝐼𝐹 0) (dynamical) (βˆ‡β‹… πœ“ 𝐹𝐼 πœ“ 𝐼𝐹 0) (constraint) Constituent Parts Material weights phenomenologically describe properties of the medium . . . . . . . . . . . . . . . . . . . . . . . . . . Absence of sources . . . . πœ–π‘’ ( E (𝑒) H (𝑒)) = (+βˆ‡ Γ— H (𝑒) 𝜈 ) πœ– ( 𝜁 βˆ’βˆ‡ Γ— E (𝑒)) βˆ’ (0 𝜈 ) ( E (𝑒) βˆ‡β‹…) ( 𝜁 H (𝑒)) = (0

  38. . Da Capo . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Maxwell’s Equations in Linear, Dispersionless Media . πœ“ 𝐹𝐼 πœ“ 𝐼𝐹 0) (dynamical) (βˆ‡β‹… πœ“ 𝐹𝐼 πœ“ 𝐼𝐹 0) (constraint) Constituent Parts Material weights phenomenologically describe properties of the medium . . . . . . . . . . . . . . . . . . . . . . . . . . Absence of sources . . . . πœ–π‘’ ( E (𝑒) H (𝑒)) = (+βˆ‡ Γ— H (𝑒) 𝜈 ) πœ– ( 𝜁 βˆ’βˆ‡ Γ— E (𝑒)) βˆ’ (0 𝜈 ) ( E (𝑒) βˆ‡β‹…) ( 𝜁 H (𝑒)) = (0

  39. . Da Capo . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Maxwell’s Equations in Linear, Dispersionless Media . πœ“ 𝐹𝐼 πœ“ 𝐼𝐹 0) (dynamical) (βˆ‡β‹… πœ“ 𝐹𝐼 πœ“ 𝐼𝐹 0) (constraint) Constituent Parts Material weights phenomenologically describe properties of the medium . . . . . . . . . . . . . . . . . . . . . . . . . . Absence of sources . . . . πœ–π‘’ ( E (𝑒) H (𝑒)) = (+βˆ‡ Γ— H (𝑒) 𝜈 ) πœ– ( 𝜁 βˆ’βˆ‡ Γ— E (𝑒)) βˆ’ (0 𝜈 ) ( E (𝑒) βˆ‡β‹…) ( 𝜁 H (𝑒)) = (0

  40. . πœ“ 𝐼𝐹 . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Maxwell’s Equations in Linear, Dispersionless Media πœ“ 𝐹𝐼 0) . (dynamical) (βˆ‡β‹… πœ“ 𝐹𝐼 πœ“ 𝐼𝐹 0) (constraint) Abbreviations and Notation 𝑋(𝑦) = ( 𝜁(𝑦) πœ“ 𝐹𝐼 (𝑦) πœ“ 𝐼𝐹 (𝑦) 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . πœ–π‘’ ( E (𝑒) H (𝑒)) = (+βˆ‡ Γ— H (𝑒) 𝜈 ) πœ– ( 𝜁 βˆ’βˆ‡ Γ— E (𝑒)) βˆ’ (0 𝜈 ) ( E (𝑒) βˆ‡β‹…) ( 𝜁 H (𝑒)) = (0 Multiply both sides of dynamical Maxwell equations by i 𝜈(𝑦) ) + i βˆ‡ Γ— Introduce Rot ∢= ( ) and Div ∢= ( βˆ‡β‹… βˆ’ i βˆ‡ Γ— βˆ‡β‹… )

  41. . πœ“ 𝐼𝐹 . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Maxwell’s Equations in Linear, Dispersionless Media πœ“ 𝐹𝐼 0) . (dynamical) (βˆ‡β‹… πœ“ 𝐹𝐼 πœ“ 𝐼𝐹 0) (constraint) Abbreviations and Notation 𝑋(𝑦) = ( 𝜁(𝑦) πœ“ 𝐹𝐼 (𝑦) πœ“ 𝐼𝐹 (𝑦) 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . πœ–π‘’ ( E (𝑒) H (𝑒)) = (+ i βˆ‡ Γ— H (𝑒) 𝜈 ) i πœ– ( 𝜁 βˆ’ i βˆ‡ Γ— E (𝑒)) βˆ’ (0 𝜈 ) ( E (𝑒) βˆ‡β‹…) ( 𝜁 H (𝑒)) = (0 Multiply both sides of dynamical Maxwell equations by i 𝜈(𝑦) ) + i βˆ‡ Γ— Introduce Rot ∢= ( ) and Div ∢= ( βˆ‡β‹… βˆ’ i βˆ‡ Γ— βˆ‡β‹… )

  42. . Da Capo . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Maxwell’s Equations in Linear, Dispersionless Media . 0) (dynamical) (βˆ‡β‹… 0) (constraint) Abbreviations and Notation 𝑋(𝑦) = ( 𝜁(𝑦) πœ“ 𝐹𝐼 (𝑦) πœ“ 𝐼𝐹 (𝑦) 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . πœ–π‘’ ( E (𝑒) H (𝑒)) = (+ i βˆ‡ Γ— H (𝑒) 𝑋 i πœ– βˆ’ i βˆ‡ Γ— E (𝑒)) βˆ’ (0 βˆ‡β‹…) 𝑋 ( E (𝑒) H (𝑒)) = (0 Multiply both sides of dynamical Maxwell equations by i 𝜈(𝑦) ) + i βˆ‡ Γ— Introduce Rot ∢= ( ) and Div ∢= ( βˆ‡β‹… βˆ’ i βˆ‡ Γ— βˆ‡β‹… )

  43. . Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Bulk-Edge Correspondence . Da Capo Maxwell’s Equations in Linear, Dispersionless Media (dynamical) (constraint) Abbreviations and Notation 𝑋(𝑦) = ( 𝜁(𝑦) πœ“ 𝐹𝐼 (𝑦) πœ“ 𝐼𝐹 (𝑦) 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . πœ–π‘’ ( E (𝑒) H (𝑒) ) = Rot ( E (𝑒) 𝑋 i πœ– H (𝑒) ) Div 𝑋( E (𝑒) H (𝑒) ) = 0 Multiply both sides of dynamical Maxwell equations by i 𝜈(𝑦) ) Introduce Rot ∢= ( + i βˆ‡ Γ— ) and Div ∢= ( βˆ‡β‹… βˆ’ i βˆ‡ Γ— βˆ‡β‹… )

  44. . Maxwell’s Equations in Linear Media . . . . . . . . . . Quantum vs. Classical Topological Classifjcation . Bulk-Edge Correspondence Da Capo Commonly Used, But Unphysical Maxwell’s Equations (dynamical) (constraint) Usually material weights are 𝑋 β‰  𝑋 complex! ⇝ e. g. gyrotropic media (QHE of Light!) Immediate Consequences Equations must be considered on subspaces complex Banach space 𝑀 2 (ℝ 3 , β„‚ 6 ) Even if initial conditions are real, solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . πœ–π‘’ ( E (𝑒) H (𝑒) ) = Rot ( E (𝑒) 𝑋 i πœ– H (𝑒) ) Div 𝑋( E (𝑒) H (𝑒) ) = 0 ( E (𝑒) , H (𝑒)) β‰  ( E (𝑒) , H (𝑒)) acquire imaginary part over time!

  45. . Maxwell’s Equations in Linear Media . . . . . . . . . . Quantum vs. Classical Topological Classifjcation . Bulk-Edge Correspondence Da Capo Commonly Used, But Unphysical Maxwell’s Equations (dynamical) (constraint) Usually material weights are 𝑋 β‰  𝑋 complex! ⇝ e. g. gyrotropic media (QHE of Light!) Immediate Consequences Equations must be considered on subspaces complex Banach space 𝑀 2 (ℝ 3 , β„‚ 6 ) Even if initial conditions are real, solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . πœ–π‘’ ( E (𝑒) H (𝑒) ) = Rot ( E (𝑒) 𝑋 i πœ– H (𝑒) ) Div 𝑋( E (𝑒) H (𝑒) ) = 0 ( E (𝑒) , H (𝑒)) β‰  ( E (𝑒) , H (𝑒)) acquire imaginary part over time!

  46. . Maxwell’s Equations in Linear Media . . . . . . . . . . Quantum vs. Classical Topological Classifjcation . Bulk-Edge Correspondence Da Capo Commonly Used, But Unphysical Maxwell’s Equations (dynamical) (constraint) Usually material weights are 𝑋 β‰  𝑋 complex! ⇝ e. g. gyrotropic media (QHE of Light!) Immediate Consequences Equations must be considered on subspaces complex Banach space 𝑀 2 (ℝ 3 , β„‚ 6 ) Even if initial conditions are real, solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . πœ–π‘’ ( E (𝑒) H (𝑒) ) = Rot ( E (𝑒) 𝑋 i πœ– H (𝑒) ) Div 𝑋( E (𝑒) H (𝑒) ) = 0 ( E (𝑒) , H (𝑒)) β‰  ( E (𝑒) , H (𝑒)) acquire imaginary part over time!

  47. . Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Bulk-Edge Correspondence . Da Capo Commonly Used, But Unphysical Maxwell’s Equations (dynamical) (constraint) Usually material weights are 𝑋 β‰  𝑋 complex! Three Options 1 Take the real part of the complex wave 2 Give up on real-valuedness of electromagnetic fjelds. ⇝ Inconsistent interpretation (complex Lorentz force!?!) 3 . . . . . . . . . . . . . . . . Modify equations of motion. ⇝ Correct choice! . . . . . . . . . . . . . πœ–π‘’ ( E (𝑒) H (𝑒) ) = Rot ( E (𝑒) 𝑋 i πœ– H (𝑒) ) Div 𝑋( E (𝑒) H (𝑒) ) = 0 ⟹ Breaks conservation of energy!

  48. . Bulk-Edge Correspondence . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Da Capo . Commonly Used, But Unphysical Maxwell’s Equations (dynamical) (constraint) Usually material weights are 𝑋 β‰  𝑋 complex! Three Options 1 Take the real part of the complex wave ⟹ Breaks conservation of energy! 2 Give up on real-valuedness of electromagnetic fjelds. ⇝ Inconsistent interpretation (complex Lorentz force!?!) 3 . . . . . . . . . . . . . . . . Modify equations of motion. ⇝ Correct choice! . . . . . . . . . . . . . . πœ–π‘’ ( E (𝑒) H (𝑒) ) = Rot ( E (𝑒) 𝑋 i πœ– H (𝑒) ) Div 𝑋( E (𝑒) H (𝑒) ) = 0

  49. . Bulk-Edge Correspondence . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Da Capo . Commonly Used, But Unphysical Maxwell’s Equations (dynamical) (constraint) Usually material weights are 𝑋 β‰  𝑋 complex! Three Options 1 Take the real part of the complex wave ⟹ Breaks conservation of energy! 2 Give up on real-valuedness of electromagnetic fjelds. ⇝ Inconsistent interpretation (complex Lorentz force!?!) 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . πœ–π‘’ ( E (𝑒) H (𝑒) ) = Rot ( E (𝑒) 𝑋 i πœ– H (𝑒) ) Div 𝑋( E (𝑒) H (𝑒) ) = 0 Modify equations of motion. ⇝ Correct choice

  50. . Quantum vs. Classical . . . . . . . . . . Maxwell’s Equations in Linear Media . Topological Classifjcation Bulk-Edge Correspondence Da Capo Maxwell’s Equations for Gyrotropic Media Real solutions linear combination of complex Β±πœ• waves: Pair of equations ( derived from Maxwell’s equations for linear, dispersive media!) πœ• > 0 ∢ πœ• < 0 ∢ 𝑋(𝑒, 𝑦) = 𝑋(𝑒, 𝑦) ⟺ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 𝑋 βˆ’ (𝑦) = 𝑋 + (𝑦) ( E , H ) = Ξ¨ + + Ξ¨ βˆ’ = 2 Re Ξ¨ Β± {𝑋 + i πœ– 𝑒 Ξ¨ + = Rot Ξ¨ + Div 𝑋 + Ξ¨ + = 0 {𝑋 βˆ’ i πœ– 𝑒 Ξ¨ βˆ’ = Rot Ξ¨ βˆ’ Div 𝑋 βˆ’ Ξ¨ βˆ’ = 0

  51. . . . . . . . . . . . . Quantum vs. Classical . Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Maxwell’s Equations for Gyrotropic Media Real solutions linear combination of complex Β±πœ• waves: Pair of equations ( derived from Maxwell’s equations for linear, dispersive media!) πœ• > 0 ∢ πœ• < 0 ∢ ⟺ . . . . . . . . . . . . . . . . . . . . . . . . . . . 𝑋 βˆ’ (𝑦) = 𝑋 + (𝑦) ( E , H ) = Ξ¨ + + Ξ¨ βˆ’ = 2 Re Ξ¨ Β± {𝑋 + i πœ– 𝑒 Ξ¨ + = Rot Ξ¨ + Div 𝑋 + Ξ¨ + = 0 {𝑋 + i πœ– 𝑒 Ξ¨ βˆ’ = Rot Ξ¨ βˆ’ Div 𝑋 + Ξ¨ βˆ’ = 0 𝑋(𝑒, 𝑦) = 𝑋(𝑒, 𝑦)

  52. . . . . . . . . . . . . Quantum vs. Classical . Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Maxwell’s Equations for Gyrotropic Media Real solutions linear combination of complex Β±πœ• waves: Pair of equations ( derived from Maxwell’s equations for linear, dispersive media!) πœ• > 0 ∢ πœ• < 0 ∢ ⟺ . . . . . . . . . . . . . . . . . . . . . . . . . . . 𝑋 βˆ’ (𝑦) = 𝑋 + (𝑦) ( E , H ) = Ξ¨ + + Ξ¨ βˆ’ = 2 Re Ξ¨ + {𝑋 + i πœ– 𝑒 Ξ¨ + = Rot Ξ¨ + Div 𝑋 + Ξ¨ + = 0 {𝑋 βˆ’ i πœ– 𝑒 Ξ¨ βˆ’ = Rot Ξ¨ βˆ’ Div 𝑋 βˆ’ Ξ¨ βˆ’ = 0 𝑋(𝑒, 𝑦) = 𝑋(𝑒, 𝑦)

  53. . . . . . . . . . . . . Quantum vs. Classical . Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Maxwell’s Equations for Gyrotropic Media Physically Meaningful Equations πœ• > 0 ∢ Compatibility with reality-condition baked in! Difgerence between physical and unphysical equations: defjned on difgerent subspaces of Banach space 𝑀 2 (ℝ 3 , β„‚ 6 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . Real solutions ( E (𝑒) , H (𝑒)) = 2 Re Ξ¨ + (𝑒) where Ξ¨ + (𝑒) solves {𝑋 + i πœ– 𝑒 Ξ¨ + = Rot Ξ¨ + Div 𝑋 + Ξ¨ + = 0 β„‹ + = { complex πœ• > 0 states } ⊊ β„‹ β„‚,βŸ‚ = ker ( Div 𝑋 + )

  54. . . . . . . . . . . . . Quantum vs. Classical . Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Maxwell’s Equations for Gyrotropic Media Physically Meaningful Equations πœ• > 0 ∢ Compatibility with reality-condition baked in! Difgerence between physical and unphysical equations: defjned on difgerent subspaces of Banach space 𝑀 2 (ℝ 3 , β„‚ 6 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . Real solutions ( E (𝑒) , H (𝑒)) = 2 Re Ξ¨ + (𝑒) where Ξ¨ + (𝑒) solves {𝑋 + i πœ– 𝑒 Ξ¨ + = Rot Ξ¨ + Div 𝑋 + Ξ¨ + = 0 β„‹ + = { complex πœ• > 0 states } ⊊ β„‹ β„‚,βŸ‚ = ker ( Div 𝑋 + )

  55. . . . . . . . . . . . . Quantum vs. Classical . Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Maxwell’s Equations for Gyrotropic Media Physically Meaningful Equations πœ• > 0 ∢ Compatibility with reality-condition baked in! Difgerence between physical and unphysical equations: defjned on difgerent subspaces of Banach space 𝑀 2 (ℝ 3 , β„‚ 6 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . Real solutions ( E (𝑒) , H (𝑒)) = 2 Re Ξ¨ + (𝑒) where Ξ¨ + (𝑒) solves {𝑋 + i πœ– 𝑒 Ξ¨ + = Rot Ξ¨ + Div 𝑋 + Ξ¨ + = 0 β„‹ + = { complex πœ• > 0 states } ⊊ β„‹ β„‚,βŸ‚ = ker ( Div 𝑋 + )

  56. . . . . . . . . . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo SchrΓΆdinger formalism for Maxwell’s . . . . . . . . . . . . . . . . . . . . . . . . equations in non-dispersive media

  57. . Maxwell’s Equations in Linear Media . . . . . . . . . . Quantum vs. Classical Topological Classifjcation . Bulk-Edge Correspondence Da Capo Relevant Electromagnetic Media Assumption (Material weights) πœ“(𝑦) πœ“(𝑦) βˆ— 𝜈(𝑦)) 1 The medium is lossless . 2 index medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 𝑋 + (𝑦) = ( 𝜁(𝑦) ( 𝑋 βˆ— + = 𝑋 + ) 𝑋 + describes a positive ( 0 < 𝑑 𝟚 ≀ 𝑋 + ≀ 𝐷 𝟚 )

  58. . ⎫ . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo SchrΓΆdinger Formalism of Maxwell’s Equations Real transversal states (𝜁 πœ“ πœ” 𝐼 ) = (+βˆ‡ Γ— πœ” 𝐹 βˆ’βˆ‡ Γ— πœ” 𝐼 ) } . ⎬ } ⎭ ⟷ ⎧ { { ⎨ { { ⎩ Complex states with πœ• > 0 β„‹ = {Ξ¨ ∈ 𝑀 2 (ℝ 3 , β„‚ 6 ) ∣ Ξ¨ is πœ• > 0 state } Energy scalar product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (De Nittis & L., Annals of Physics 396 , pp. 221–260, 2018) Theorem (De Nittis & L. (2018)) Ξ¨ = 𝑄 + ( E , H ) ( E , H ) = 2 Re Ξ¨ 𝑁 = 𝑋 βˆ’1 Rot | πœ•>0 = 𝑁 βˆ— 𝑋 πœ“ βˆ— 𝜈) πœ– i πœ– 𝑒 Ξ¨ = 𝑁Ψ πœ–π‘’ (πœ” 𝐹 ℝ 3 d 𝑦 Ξ¦(𝑦) β‹… 𝑋(𝑦)Ξ¨(𝑦) ⟨Φ, Ψ⟩ 𝑋 = ∫ (All subscripts + dropped to simplify notation.)

  59. . Maxwell’s Equations in Linear Media . . . . . . . . . . Quantum vs. Classical Topological Classifjcation . Bulk-Edge Correspondence Da Capo 1 Quantum vs. Classical 2 Maxwell’s Equations in Linear Media 3 Topological Classifjcation of Electromagnetic Media 4 Obstacles For Proving the Photonic Bulk-Edge Correspondence 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Da Capo

  60. . Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Bulk-Edge Correspondence . Da Capo Main Messages of This Talk 1 Rewrite Maxwell’s equations in the form of a SchrΓΆdinger equation. De Nittis & L., Annals of Physics 396 , pp. 221–260, 2018 2 Classify electromagnetic media using the Cartan-Altland-Zirnbauer scheme. De Nittis & L., arXiv:1710.08104, 2017; De Nittis & L., arXiv:1806.07783, 2018 3 Adapt existing techniques to prove bulk-boundary correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . … in progress

  61. . Symmetries of the In Vacuo Maxwell Equations . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo πœ• > 0 ∢ . Real Symmetry Complex Representative TI Classifjcation Meaning +TR Flips helicity and arrow of time ordinary Dual symmetry +TR Ordinary EM . . . . . . . . . . . . . . . . . . . . . . . . . . time-reversal . . . . . { i πœ– 𝑒 Ξ¨ = Rot Ξ¨ Div Ξ¨ = 0 π‘Š ℝ π‘Š β„‚ 1 = 𝜏 1 βŠ— 𝟚 1 = (𝜏 1 βŠ—πŸš) 𝐷 2 = i 𝜏 2 βŠ— 𝟚 2 = i 𝜏 2 βŠ— 𝟚 π‘Š ℝ π‘Š β„‚ π‘Š ℝ π‘Š β„‚ 3 = 𝜏 3 βŠ— 𝟚 3 = (𝜏 3 βŠ—πŸš) 𝐷

  62. . . . . . . . . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Media Breaking/Preserving Symmetries ⟺ . . . . . . . . . . . . . . . . . . . . . . . . . {[ Rot , π‘Š β„‚ ] = 0 (vac. symm.) Medium has symmetry π‘Š β„‚ π‘Š β„‚ (anti)unitary on β„‹

  63. . . . . . . . . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Media Breaking/Preserving Symmetries ⟺ . . . . . . . . . . . . . . . . . . . . . . . . . Medium has symmetry π‘Š β„‚ [𝑋, π‘Š β„‚ ] = 0

  64. . . . . . . . . . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo . . . . . . . . . . . . . . . . . . . . . . . . Photonic Crystals: Periodic Electromagnetic Media

  65. . Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Bulk-Edge Correspondence . Da Capo Material vs. Crystallographic Symmetries Material πœ“ πœ“ βˆ— 𝜈) Properties of and relations between 𝜁 , 𝜈 and πœ“ 3 Crystallographic Wu & Hu (2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lu et al (2013) 𝑋 = ( 𝜁 a az Λ† r a 2 a 1 π‘Š β„‚ 1 , π‘Š β„‚ 2 and π‘Š β„‚ o ax Λ† ay Λ† a 3

  66. . Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Bulk-Edge Correspondence . Da Capo Material vs. Crystallographic Symmetries Material πœ“ πœ“ βˆ— 𝜈) Properties of and relations between 𝜁 , 𝜈 and πœ“ 3 Crystallographic Wu & Hu (2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lu et al (2013) 𝑋 = ( 𝜁 a az Λ† r π‘Š β„‚ 1 , π‘Š β„‚ 2 and π‘Š β„‚ a 2 a 1 o ax Λ† ay Λ† a 3

  67. . . . . . . . . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Topological Classifjcation of EM Media Assumption . . . . . . . . . . . . . . . . . . . . . . . . . 𝑋 has no crystallographic symmetries.

  68. . Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Bulk-Edge Correspondence . Da Capo Topological Classifjcation of EM Media Theorem (De Nittis & L. (2017)) Non-gyrotropic Dual-symmetric, non-gyrotr. 𝑋 = ( 𝜁 𝜁 Gyrotropic No symmetries Magneto-electric . . . . . . . . . . . . . . . . . . . . . . . . . ( De Nittis & L., arxiv:1710.08104 (2017)) . . . . 𝑋 = ( 𝜁 0 0 𝜈 ) = ( 𝜁 0 𝑋 = ( 𝜁 0 0 𝜈 ) β‰  ( 𝜁 0 0 𝜈 ) 0 𝜈 ) π‘Š β„‚ 3 = (𝜏 3 βŠ— 𝟚) 𝐷 βˆ’ i πœ“ βˆ’ i πœ“ 𝑋 = ( 𝜁 πœ“ πœ“ 𝜁 ) = ( 𝜁 πœ“ + i πœ“ + i πœ“ 𝜁 ) = ( 𝜁 ) πœ“ 𝜁 ) π‘Š β„‚ π‘Š β„‚ 1 = (𝜏 1 βŠ— 𝟚) 𝐷 , π‘Š β„‚ 1 = (𝜏 1 βŠ— 𝟚) 𝐷 3 = (𝜏 3 βŠ— 𝟚) 𝐷

  69. . Topological Classifjcation of EM Media . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Theorem (De Nittis & L. (2017)) . Non-gyrotropic Class AI Realized, e. g. dielectrics Dual-symmetric, non-gyrotr. Two +TR ⟹ 2 Γ— Class AI Realized, e. g. vacuum and YIG Gyrotropic Class A (Quantum Hall Class) Realized, e. g. YIG for microwaves Magneto-electric Class AI Realized, e. g. Tellegen media 4 difgerent topological classes of EM media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( De Nittis & L., arxiv:1710.08104 (2017))

  70. . Topological Classifjcation of EM Media . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Theorem (De Nittis & L. (2017)) . Non-gyrotropic Class AI Realized, e. g. dielectrics Dual-symmetric, non-gyrotr. Two +TR ⟹ 2 Γ— Class AI Realized, e. g. vacuum and YIG Gyrotropic Class A (Quantum Hall Class) Realized, e. g. YIG for microwaves Magneto-electric Class AI Realized, e. g. Tellegen media Only one is topologically non-trivial in 𝑒 ≀ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( De Nittis & L., arxiv:1710.08104 (2017))

  71. . . . . . . . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Conclusions from Topological Classifjcation Some works proposed to use unphysical symmetries Class AII cannot occur via material symmetries alone supported! Tight-binding operators cannot have incompatible . . . . . . . . . . . . . . . . . . . . . . . . . . symmetries! (e. g. fermionic time-reversal symmetries π‘Š f = (𝜏 2 βŠ— 𝟚) 𝐷 ) ⇝ No β„€ 2 -valued Kane-Mele-type topological invariants

  72. . Maxwell’s Equations in Linear Media . . . . . . . . . . Quantum vs. Classical Topological Classifjcation . Bulk-Edge Correspondence Da Capo 1 Quantum vs. Classical 2 Maxwell’s Equations in Linear Media 3 Topological Classifjcation of Electromagnetic Media 4 Obstacles For Proving the Photonic Bulk-Edge Correspondence 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Da Capo

  73. . Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Bulk-Edge Correspondence . Da Capo Main Messages of This Talk 1 Rewrite Maxwell’s equations in the form of a SchrΓΆdinger equation. De Nittis & L., Annals of Physics 396 , pp. 221–260, 2018 2 Classify electromagnetic media using the Cartan-Altland-Zirnbauer scheme. De Nittis & L., arXiv:1710.08104, 2017; De Nittis & L., arXiv:1806.07783, 2018 3 Adapt existing techniques to prove bulk-boundary correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . … in progress

  74. . . . . . . . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Physical Setting Joannopoulos, SoljačiΔ‡ et al (2009) Quasi-2d photonic crystal Topological photonic crystal of class A . . . . . . . . . . . . . . . . . . . . . . . . . . (i. e. 𝑋 breaks π‘Š β„‚ 1 and π‘Š β„‚ 3 )

  75. . . . . . . . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo A Physicist’s POV of the Bulk-Edge Correspondence Joannopoulos, SoljačiΔ‡ et al (2009) 0 + 1 = 1 β‡’ 1 edge mode Skirlo et al, PRL 113, 113904, 2014 0 + 0 βˆ’ 2 + 4 + 2 = 4 β‡’ 4 edge modes . . . . . . . . . . . . . . . . . . . . . . . . . . Works as advertised!

  76. . Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Bulk-Edge Correspondence . Da Capo Haldane’s Photonic Bulk-Edge Correspondence Conjecture Tasks 1 2 Defjne edge system ( ⇝ boundary conditions can break +TR symmetries!) 3 Proof of β€œmathematical” bulk-edge correspondence 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Identify the topological observable ⇝ Poynting vector? π‘ˆ bulk = π‘ˆ edge = net β™― of edge modes Defjne topological bulk invariant π‘ˆ bulk

  77. . Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Bulk-Edge Correspondence . Da Capo Haldane’s Photonic Bulk-Edge Correspondence Conjecture Tasks 1 2 Defjne edge system ( ⇝ boundary conditions can break +TR symmetries!) 3 Proof of β€œmathematical” bulk-edge correspondence 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Identify the topological observable ⇝ Poynting vector? π‘ˆ bulk = π‘ˆ edge = net β™― of edge modes Defjne topological bulk invariant π‘ˆ bulk

  78. . Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Bulk-Edge Correspondence . Da Capo Haldane’s Photonic Bulk-Edge Correspondence Conjecture Tasks 1 2 Defjne edge system ( ⇝ boundary conditions can break +TR symmetries!) 3 Proof of β€œmathematical” bulk-edge correspondence 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Identify the topological observable ⇝ Poynting vector? π‘ˆ bulk = π‘ˆ edge = net β™― of edge modes Defjne topological bulk invariant π‘ˆ bulk

  79. . Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Bulk-Edge Correspondence . Da Capo Haldane’s Photonic Bulk-Edge Correspondence Conjecture Tasks 1 2 Defjne edge system ( ⇝ boundary conditions can break +TR symmetries!) 3 Proof of β€œmathematical” bulk-edge correspondence 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Identify the topological observable ⇝ Poynting vector? π‘ˆ bulk = π‘ˆ edge = net β™― of edge modes Defjne topological bulk invariant π‘ˆ bulk

  80. . Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Bulk-Edge Correspondence . Da Capo Haldane’s Photonic Bulk-Edge Correspondence Conjecture Tasks 1 2 Defjne edge system ( ⇝ boundary conditions can break +TR symmetries!) 3 Proof of β€œmathematical” bulk-edge correspondence 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Identify the topological observable ⇝ Poynting vector? π‘ˆ bulk = π‘ˆ edge = net β™― of edge modes Defjne topological bulk invariant π‘ˆ bulk

  81. . Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Bulk-Edge Correspondence . Da Capo Haldane’s Photonic Bulk-Edge Correspondence Conjecture Tasks 1 2 Defjne edge system ( ⇝ boundary conditions can break +TR symmetries!) 3 Proof of β€œmathematical” bulk-edge correspondence 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Identify the topological observable ⇝ Poynting vector? π‘ˆ bulk = π‘ˆ edge = net β™― of edge modes Defjne topological bulk invariant π‘ˆ bulk

  82. . . . . . . . . . . . . Quantum vs. Classical . Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo The Frequency Band Picture Theorem (De Nittis & L., 2014) 1 Bloch bands and functions locally analytic away from crossings 2 2 ground state bands with β‰ˆ linear dispersion at 𝑙 = 0 and πœ• = 0 3 . . . . . . . . . . . . . . . (Theorem 1.4 and Lemma 3.7 in De Nittis & L., Documenta Math. 19 , pp. 63–101, 2014) . . . . . . . . . . . . w A + n 4 n 3 B + n 2 n 1 k -p p n 1 B A 𝑄 gs (𝑙) discontinuous at 𝑙 = 0 (jump in dimensionality!)

  83. . Da Capo . . . . . . . . Quantum vs. Classical Maxwell’s Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence The Bloch Vector Bundle . Proceed as Usual 1 Select bulk frequency band gap. 2 Defjne the β€œFermi projection” 𝑄(𝑙) ∢= βˆ‘ π‘œ 3 Defjne the Bloch bundle β„° π•Œ βˆ— (𝑄) ∢ ⨆ π‘™βˆˆπ•Œ βˆ— 𝜌 ⟢ π•Œ βˆ— . . . . . . . . . . . . . . . . In Bloch-Floquet representation. . . . . . . . . . . . . . . w A + n 4 n 3 B + n 2 n 1 k -p p n 1 B π‘˜=1 |πœ’ π‘˜ (𝑙)βŸ©βŸ¨πœ’ π‘˜ (𝑙)| . A ran 𝑄(𝑙)

Recommend


More recommend