. Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Bulk-Edge Correspondence . Da Capo Quantum vs. Classical Equations: a Single Spin Idea Start with the same equations of motion, π 2 (π’)) = ( 0 0 ) (π 1 (π’) π 2 (π’)) , once in the quantum and then in the classical context. Math is trivial, everything is explicit Immediately transfers to many other hamiltonian equations as . . . . . . . . . . . . . . . . . . . . . . . . Conceptually applies to all classical wave equations . . . . . β i π 0 i π + i π 0 ππ’ (π 1 (π’) πΎ = i π 2 is the canonical symplectic form
. Bulk-Edge Correspondence . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Da Capo . Symmetries of Classical and Quantum Spin Equations Purpose Anticipate symmetry classifjcation of electromagnetic media π 2 (π’)) = ( 0 0 ) (π 1 (π’) π 2 (π’)) , What is the difgerence between the quantum and classical equations when it comes to symmetries? What types of symmetries does the classical equation possess (in the context of the Cartan-Altland-Zirnbauer classifjcation)? . . . . . . . . . . . . . . . . . . . . . . . . . βΉ Requires us to work with complex Hilbert spaces . . . . . β i π 0 i π + i π 0 ππ’ (π 1 (π’)
. Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Bulk-Edge Correspondence . Da Capo Symmetries of Classical and Quantum Spin Equations Purpose Anticipate symmetry classifjcation of electromagnetic media π 2 (π’)) = ( 0 0 ) (π 1 (π’) π 2 (π’)) , What is the difgerence between the quantum and classical equations when it comes to symmetries? What types of symmetries does the classical equation possess . . . . . . . . . . . . . . . . . . . . . . . . βΉ Requires us to work with complex Hilbert spaces . . . . . β i π 0 i π + i π 0 ππ’ (π 1 (π’) (in the context of the Cartan-Altland-Zirnbauer classifjcation)?
. 0 = +πΌ 2 (chiral) Symmetries Building blocks π 2 (π’)) ) (π 1 (π’) . π· πΌ π· = πΌ = βπΌ π 2 (π’)) = ( Fundamental equation Quantum Symmetries of Classical and Quantum Spin Systems Da Capo Bulk-Edge Correspondence Topological Classifjcation (ordin.) (+PH) Quantum vs. Classical π π¦ (π’) (+PH) π· πΌ π· = πΌ = βπΌ (ordin.) = +πΌ 2 (chiral) Symmetries Building blocks (-PH) π π§ (π’)) ) (π π¦ (π’) 0 0 π π§ (π’)) = ( Fundamental equation Classical Maxwellβs Equations in Linear Media 0 . . . . . . . . . . . . . . . . . . . . . . . . (-PH) . . . . . . . . . . . . . . β i π 0 β i π 0 i π i π + i π 0 + i π 0 ππ’ (π π¦ (π’) ππ’ (π 1 (π’) Hamiltonian: πΌ = π 0 π 2 Hamiltonian: πΌ = π 0 π 2 = πΌ β States: ( π 1 (π’) States: ( π π§ (π’) ) β β β = β 2 π 2 (π’) ) β β β = β 2 π 1,3 πΌ π β1 1,3 = βπΌ π 1,3 πΌ π β1 1,3 = βπΌ π 2 πΌ π β1 π 2 πΌ π β1 (π 1,3 π·) πΌ (π 1,3 π·) β1 = +πΌ (+TR) (π 1,3 π·) πΌ (π 1,3 π·) β1 = +πΌ (+TR) (π 2 π·) πΌ (π 2 π·) β1 = βπΌ (π 2 π·) πΌ (π 2 π·) β1 = βπΌ
. ) (π 1 (π’) (ordin.) = +πΌ 2 (chiral) Symmetries Building blocks π 2 (π’)) 0 (+PH) . π 2 (π’)) = ( Fundamental equation Quantum Symmetries of Classical and Quantum Spin Systems Da Capo Bulk-Edge Correspondence π· πΌ π· = πΌ = βπΌ (-PH) Maxwellβs Equations in Linear Media π π¦ (π’) (+PH) π· πΌ π· = πΌ = βπΌ (ordin.) = +πΌ 2 (chiral) Symmetries States: ( Classical Building blocks π π§ (π’)) ) (π π¦ (π’) 0 0 π π§ (π’)) = ( Fundamental equation Topological Classifjcation 0 Quantum vs. Classical . . . . . . . . . . . . . . . . . . . . . . . . (-PH) . . . . . . . . . . . . . . β i π 0 β i π 0 i π i π + i π 0 + i π 0 ππ’ (π π¦ (π’) ππ’ (π 1 (π’) Hamiltonian: πΌ = π 0 π 2 Hamiltonian: πΌ = π 0 π 2 = πΌ β States: ( π 1 (π’) π π§ (π’) ) β β β = β 2 π 2 (π’) ) β β β = β 2 π 1,3 πΌ π β1 1,3 = βπΌ π 1,3 πΌ π β1 1,3 = βπΌ π 2 πΌ π β1 π 2 πΌ π β1 (π 1,3 π·) πΌ (π 1,3 π·) β1 = +πΌ (+TR) (π 1,3 π·) πΌ (π 1,3 π·) β1 = +πΌ (+TR) (π 2 π·) πΌ (π 2 π·) β1 = βπΌ (π 2 π·) πΌ (π 2 π·) β1 = βπΌ
. ) (π 1 (π’) (ordin.) = +πΌ 2 (chiral) Symmetries Building blocks π 2 (π’)) 0 (+PH) . π 2 (π’)) = ( Fundamental equation Quantum Symmetries of Classical and Quantum Spin Systems Da Capo Bulk-Edge Correspondence π· πΌ π· = πΌ = βπΌ (-PH) Maxwellβs Equations in Linear Media π π¦ (π’) (+PH) π· πΌ π· = πΌ = βπΌ (ordin.) = +πΌ 2 (chiral) Symmetries? States: ( Classical Building blocks π π§ (π’)) ) (π π¦ (π’) 0 0 π π§ (π’)) = ( Fundamental equation Topological Classifjcation 0 Quantum vs. Classical . . . . . . . . . . . . . . . . . . . . . . . . (-PH) . . . . . . . . . . . . . . β i π 0 β i π 0 i π i π + i π 0 + i π 0 ππ’ (π π¦ (π’) ππ’ (π 1 (π’) Hamiltonian: πΌ = π 0 π 2 Hamiltonian: πΌ = π 0 π 2 = πΌ β States: ( π 1 (π’) π π§ (π’) ) β β β = β 2 π 2 (π’) ) β β β = β 2 π 1,3 πΌ π β1 1,3 = βπΌ π 1,3 πΌ π β1 1,3 = βπΌ π 2 πΌ π β1 π 2 πΌ π β1 (π 1,3 π·) πΌ (π 1,3 π·) β1 = +πΌ (+TR) (π 1,3 π·) πΌ (π 1,3 π·) β1 = +πΌ (+TR) (π 2 π·) πΌ (π 2 π·) β1 = βπΌ (π 2 π·) πΌ (π 2 π·) β1 = βπΌ
. 0 (chiral) Symmetries Building blocks π 2 (π’)) ) (π 1 (π’) 0 . = +πΌ Fundamental equation Quantum Symmetries of Classical and Quantum Spin Systems Da Capo Bulk-Edge Correspondence Topological Classifjcation Maxwellβs Equations in Linear Media 2 (ordin.) . π π§ (π’)) (+PH) π· πΌ π· = πΌ = βπΌ (???) (???) Symmetries π π¦ (π’) Building blocks ) (π π¦ (π’) π· πΌ π· = πΌ = βπΌ 0 0 π π§ (π’)) = ( Fundamental equation Classical (-PH) (+PH) Quantum vs. Classical π 2 (π’)) = ( . . . . . . . . . . . . . . . . . . . . . . . (-PH) . . . . . . . . . . . . . . β i π 0 β i π 0 i π i π + i π 0 + i π 0 ππ’ (π π¦ (π’) ππ’ (π 1 (π’) Hamiltonian: πΌ = π 0 π 2 Hamiltonian: πΌ = π 0 π 2 = πΌ β States: ( π 1 (π’) States: ( π π§ (π’) ) β β β = β 2 π 2 (π’) ) β β β = β 2 π 1,3 πΌ π β1 1,3 = βπΌ π 1,3 πΌ π β1 1,3 = βπΌ ( i π 2 ) πΌ ( i π 2 ) β1 = +πΌ π 2 πΌ π β1 (π 1,3 π·) πΌ (π 1,3 π·) β1 = +πΌ (+TR) (π 1,3 π·) πΌ (π 1,3 π·) β1 = +πΌ (+TR) (π 2 π·) πΌ (π 2 π·) β1 = βπΌ (π 2 π·) πΌ (π 2 π·) β1 = βπΌ
. Quantum π 2 (π’)) ) (π 1 (π’) 0 0 π 2 (π’)) = ( . Symmetries of Classical and Quantum Spin Systems Symmetries Da Capo Bulk-Edge Correspondence Topological Classifjcation Maxwellβs Equations in Linear Media Quantum vs. Classical . Building blocks (chiral) . 0 Symmetries π π¦ (π’) Building blocks π π§ (π’)) ) (π π¦ (π’) 0 π π§ (π’)) = ( 2 Fundamental equation Classical (-PH) (+PH) π· πΌ π· = πΌ = βπΌ (ordin.) = +πΌ . Fundamental equation . . . . . . . . . . . . . . . . . . . . β classical spin transformations . . . . . . . . . . . . . . . β i π 0 β i π 0 i π i π + i π 0 + i π 0 ππ’ (π π¦ (π’) ππ’ (π 1 (π’) Hamiltonian: πΌ = π 0 π 2 Hamiltonian: πΌ = π 0 π 2 = πΌ β States: ( π 1 (π’) States: ( π π§ (π’) ) β β β = β 2 π 2 (π’) ) β β β = β 2 π 1,3 πΌ π β1 1,3 = βπΌ π· not defjned on β β = β 2 π 1 , i π 2 and π 3 are real matrices π 2 πΌ π β1 (π 1,3 π·) πΌ (π 1,3 π·) β1 = +πΌ (+TR) (π 2 π·) πΌ (π 2 π·) β1 = βπΌ
. 0 (chiral) Symmetries Building blocks π 2 (π’)) ) (π 1 (π’) 0 . = +πΌ Fundamental equation Quantum Symmetries of Classical and Quantum Spin Systems Da Capo Bulk-Edge Correspondence Topological Classifjcation Maxwellβs Equations in Linear Media 2 (ordin.) . π π§ (π’)) (+PH) π· πΌ π· = πΌ = βπΌ (???) (???) Symmetries π π¦ (π’) Building blocks ) (π π¦ (π’) π· πΌ π· = πΌ = βπΌ 0 0 π π§ (π’)) = ( Fundamental equation Classical (-PH) (+PH) Quantum vs. Classical π 2 (π’)) = ( . . . . . . . . . . . . . . . . . . . . . . . (-PH) . . . . . . . . . . . . . . β i π 0 β i π 0 i π i π + i π 0 + i π 0 ππ’ (π π¦ (π’) ππ’ (π 1 (π’) Hamiltonian: πΌ = π 0 π 2 Hamiltonian: πΌ = π 0 π 2 = πΌ β States: ( π 1 (π’) States: ( π π§ (π’) ) β β β = β 2 π 2 (π’) ) β β β = β 2 π 1,3 πΌ π β1 1,3 = βπΌ π 1,3 πΌ π β1 1,3 = βπΌ ( i π 2 ) πΌ ( i π 2 ) β1 = +πΌ π 2 πΌ π β1 (π 1,3 π·) πΌ (π 1,3 π·) β1 = +πΌ (+TR) (π 1,3 π·) πΌ (π 1,3 π·) β1 = +πΌ (+TR) (π 2 π·) πΌ (π 2 π·) β1 = βπΌ (π 2 π·) πΌ (π 2 π·) β1 = βπΌ
. Quantum ) (π 1 (π’) 0 0 π 2 (π’)) = ( . Fundamental equation Symmetries of Classical and Quantum Spin Systems Building blocks Da Capo Bulk-Edge Correspondence Topological Classifjcation Maxwellβs Equations in Linear Media Quantum vs. Classical . π 2 (π’)) Symmetries . ) (π π¦ (π’) (???) Symmetries π π¦ (π’) States: ( Building blocks π π§ (π’)) 0 (ordin.) 0 π π§ (π’)) = ( Fundamental equation Classical (+PH) π· (-PH) . (???) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . β i π 0 β i π 0 i π i π + i π 0 + i π 0 ππ’ (π π¦ (π’) ππ’ (π 1 (π’) Hamiltonian: πΌ = π 0 π 2 Hamiltonian: πΌ = π 0 π 2 = πΌ β States: ( π 1 (π’) π π§ (π’) ) β β β = β 2 π 2 (π’) ) β β β = β 2 π β π 1 = π 1 (chiral) π 1 = π 1 π· (+TR) 1 = π 1 2 = i π 2 (???) π β π 2 = π 2 π 2 = π 2 π· π β π 3 = π 3 (chiral) π 3 = π 3 π· (+TR) 3 = π 3
. Quantum vs. Classical . . . . . . . . . . Maxwellβs Equations in Linear Media . Topological Classifjcation Bulk-Edge Correspondence Da Capo Consider Classical Equation on Complex Hilbert Space Cartan-Altland-Zirnbauer classifjcation scheme for Topological only work for operators acting on complex Hilbert spaces Two Ways to Work With Complex Hilbert Spaces 1 Complexify classical equations (introduces unphysical degrees of freedom) 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Insulators (and many other techniques from quantum mechanics) Work with complex Ξ¨ which represent real states π = 2 Re Ξ¨ (establish 1-to-1 correspondence β β β β β )
. Quantum vs. Classical . . . . . . . . . . Maxwellβs Equations in Linear Media . Topological Classifjcation Bulk-Edge Correspondence Da Capo Consider Classical Equation on Complex Hilbert Space Cartan-Altland-Zirnbauer classifjcation scheme for Topological only work for operators acting on complex Hilbert spaces Two Ways to Work With Complex Hilbert Spaces 1 Complexify classical equations (introduces unphysical degrees of freedom) 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Insulators (and many other techniques from quantum mechanics) Work with complex Ξ¨ which represent real states π = 2 Re Ξ¨ (establish 1-to-1 correspondence β β β β β )
. 0 . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo . Complexifjcation Fundamental equation π π§ (π’)) = ( 0 ) (π π¦ (π’) . π π§ (π’)) Building blocks Symmetries Classical Fundamental equation π π§ (π’)) = ( 0 0 ) (π π¦ (π’) π π§ (π’)) Building blocks States: ( π π¦ (π’) Symmetries . Complexifying the Classical Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . β i π 0 β i π 0 i π i π + i π 0 + i π 0 ππ’ (π π¦ (π’) ππ’ (π π¦ (π’) Hamiltonian: πΌ = π 0 π 2 Hamiltonian: πΌ = π 0 π 2 = πΌ β π π§ (π’) ) β β β = β 2 States: π = Ξ¨ + + Ξ¨ β β β β β β β π β π β 1 = ??? 1 = π 1 2 = i π 2 π β π β 2 = ??? π β π β 3 = ??? 3 = π 3
. ) (π π¦ (π’) . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence . Complexifying the Classical Equations Complexifjcation Fundamental equation π π§ (π’)) = ( 0 0 π π§ (π’)) . 0 Symmetries π π¦ (π’) States: ( Building blocks π π§ (π’)) ) (π π¦ (π’) 0 Building blocks π π§ (π’)) = ( Fundamental equation Classical ordin. vs. -PH none vs. +PH Symmetries . Da Capo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . β i π 0 β i π 0 i π i π + i π 0 + i π 0 ππ’ (π π¦ (π’) ππ’ (π π¦ (π’) Hamiltonian: πΌ = π 0 π 2 Hamiltonian: πΌ = π 0 π 2 = πΌ β π π§ (π’) ) β β β = β 2 States: π = Ξ¨ + + Ξ¨ β β β β β β β π β π β£ β β = π· β£ β β 1 = π 1 2 = i π 2 π β π 1,3 β£ β β = π 1,3 π· β£ β β chiral vs. +TR π β i π 2 β£ β β = i π 2 π· β£ β β 3 = π 3
. π π§ (π’)) . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation . Da Capo Complexifying the Classical Equations Complexifjcation Fundamental equation π π§ (π’)) = ( 0 0 ) (π π¦ (π’) Building blocks . 0 Symmetries π π¦ (π’) States: ( Building blocks π π§ (π’)) ) (π π¦ (π’) 0 Symmetries π π§ (π’)) = ( Fundamental equation Classical topological classifjcations!? β’ Difgerent choices β difgerent β’ Redundant symmetry operations . Bulk-Edge Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . β i π 0 β i π 0 i π i π + i π 0 + i π 0 ππ’ (π π¦ (π’) ππ’ (π π¦ (π’) Hamiltonian: πΌ = π 0 π 2 Hamiltonian: πΌ = π 0 π 2 = πΌ β π π§ (π’) ) β β β = β 2 States: π = Ξ¨ + + Ξ¨ β β β β β β β π β 1 = π 1 2 = i π 2 π β π β 3 = π 3
. Quantum vs. Classical . . . . . . . . . . Maxwellβs Equations in Linear Media . Topological Classifjcation Bulk-Edge Correspondence Da Capo Consider Classical Equation on Complex Hilbert Space Cartan-Altland-Zirnbauer classifjcation scheme for Topological only work for operators acting on complex Hilbert spaces Two Ways to Work With Complex Hilbert Spaces 1 Complexify classical equations (introduces unphysical degrees of freedom) 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Insulators (and many other techniques from quantum mechanics) Work with complex Ξ¨ which represent real states π = 2 Re Ξ¨ (establish 1-to-1 correspondence β β β β β )
. Quantum vs. Classical . . . . . . . . . . Maxwellβs Equations in Linear Media . Topological Classifjcation Bulk-Edge Correspondence Da Capo Consider Classical Equation on Complex Hilbert Space Cartan-Altland-Zirnbauer classifjcation scheme for Topological only work for operators acting on complex Hilbert spaces Two Ways to Work With Complex Hilbert Spaces 1 Complexify classical equations (introduces unphysical degrees of freedom) 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Insulators (and many other techniques from quantum mechanics) Work with complex Ξ¨ which represent real states π = 2 Re Ξ¨ (establish 1-to-1 correspondence β β β β β )
. 0 . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation . Da Capo SchrΓΆdinger Formalism of Classical Spin Waves Complexifjcation Fundamental equation π π§ (π’)) = ( 0 ) (π π¦ (π’) . π π§ (π’)) Building blocks Symmetries Classical Fundamental equation π π§ (π’)) = ( 0 0 ) (π π¦ (π’) π π§ (π’)) Building blocks States: ( π π¦ (π’) Symmetries . Bulk-Edge Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . β i π 0 β i π 0 i π i π + i π 0 + i π 0 ππ’ (π π¦ (π’) ππ’ (π π¦ (π’) Hamiltonian: πΌ = π 0 π 2 Hamiltonian: πΌ = π 0 π 2 = πΌ β π π§ (π’) ) β β β = β 2 States: π = Ξ¨ + + Ξ¨ β β β β β β β π β π β£ β β = π· β£ β β 1 = π 1 2 = i π 2 π β π 1,3 β£ β β = π 1,3 π· β£ β β π β i π 2 β£ β β = i π 2 π· β£ β β 3 = π 3
. 0 . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo . π > 0 Representation Fundamental equation π +,2 (π’)) = ( 0 ) (π +,1 (π’) . π +,2 (π’)) Building blocks Symmetries Classical Fundamental equation π π§ (π’)) = ( 0 0 ) (π π¦ (π’) π π§ (π’)) Building blocks States: ( π π¦ (π’) Symmetries . SchrΓΆdinger Formalism of Classical Spin Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . β i π 0 β i π 0 i π i π + i π 0 + i π 0 ππ’ (π π¦ (π’) ππ’ (π +,1 (π’) Hamiltonian: πΌ = π 0 π 2 Hamiltonian: πΌ = π 0 π 2 = πΌ β States: π = 2 Re Ξ¨ + β β β π π§ (π’) ) β β β = β 2 π β π β 1 = ??? 1 = π 1 2 = i π 2 π β π β 2 = ??? π β π β 3 = ??? 3 = π 3
. Quantum vs. Classical . . . . . . . . . . Maxwellβs Equations in Linear Media . Topological Classifjcation Bulk-Edge Correspondence Da Capo SchrΓΆdinger Formalism of Classical Spin Waves Eliminate superfmuous degree of freedom in complexifjed equations π(π’) β real wave Ξ¨(π’) β complex π > 0 wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-to-1 correspondence β Systematically identify β 2 β β = 2 Re
. . . . . . . . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo SchrΓΆdinger Formalism of Classical Spin Waves Eliminate superfmuous degree of freedom in complexifjed equations π) . . . . . . . . . . . . . . . . . . . . 1-to-1 correspondence . . . . . β Systematically identify β 2 β β π(π’) = ( cos π 0 π’ β sin π 0 π’ sin π 0 π’ cos π 0 π’ ) (π = 2 Re Ξ¨(π’) = 2 Re ((π β i π) e β i π 0 π’ Ξ¨ + ) where Ξ¨ + = ( 1 + i ) is the eigenvector of πΌ = π 0 π 2 to +π 0 > 0 .
. Maxwellβs Equations in Linear Media . . . . . . . . . . Quantum vs. Classical Topological Classifjcation . Bulk-Edge Correspondence Da Capo SchrΓΆdinger Formalism of Classical Spin Waves π > 0 Representation Fundamental equation Building blocks Symmetries Classical Fundamental equation Building blocks Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . i π i π ππ’ Ξ¨(π’) = π 0 π 2 Ξ¨(π’) ππ’ π(π’) = π 0 π 2 π(π’) Hamiltonian: πΌ = π 0 π 2 = πΌ β Hamiltonian: πΌ = π 0 π 2 States: Ξ¨(π’) β β + = span β {( 1 States: π(π’) = 2 Re Ξ¨(π’) β β 2 + i )} π β π β 1 = ??? 1 = π 1 2 = i π 2 π β π β 2 = ??? π β π β 3 = ??? 3 = π 3
. Bulk-Edge Correspondence . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Da Capo . Translating Real Symmetries to π > 0 Representation Requirements 1 2 maps π > 0 waves onto π > 0 waves. Consequences 1 π (unitary) ( anti unitary) 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . π = 2 Re Ξ¨ , then π = {π β π π = 2 Re (π β π β π β π Ξ¨) π β π π· π β π is a (anti)unitary on β + , i. e. it π β π must commute with πΌ = π 0 π 2
. Bulk-Edge Correspondence . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Da Capo . Translating Real Symmetries to π > 0 Representation Requirements 1 2 maps π > 0 waves onto π > 0 waves. Consequences 1 π (unitary) ( anti unitary) 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . π = 2 Re Ξ¨ , then π = {π β π π = 2 Re (π β π β π β π Ξ¨) π β π π· π β π is a (anti)unitary on β + , i. e. it π β π must commute with πΌ = π 0 π 2
. . . . . . . . . . . . Quantum vs. Classical . Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Translating Real Symmetries to π > 0 Representation Real Symmetry Complex Representative TI Classifjcation +TR ordinary . . . . . . . . . . . . . . . . . . . . . +TR . . . . . . π β π β 1 = π 1 1 = π 1 π· 2 = i π 2 2 = i π 2 π β π β π β π β 3 = π 3 3 = π 3 π·
. Bulk-Edge Correspondence . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Da Capo . Translating Real Symmetries to π > 0 Representation π > 0 Representation Fundamental equation Building blocks Symmetries (+TR) (ordinary) (+TR) Classical Fundamental equation Building blocks Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i π i π ππ’ Ξ¨(π’) = π 0 π 2 Ξ¨(π’) ππ’ π(π’) = π 0 π 2 π(π’) Hamiltonian: πΌ = π 0 π 2 = πΌ β Hamiltonian: πΌ = π 0 π 2 States: Ξ¨(π’) β β + = span β {( 1 States: π(π’) = 2 Re Ξ¨(π’) β β 2 + i )} π β π β 1 = π 1 π· 1 = π 1 2 = i π 2 2 = i π 2 π β π β π β π β 3 = π 3 π· 3 = π 3
. Maxwellβs Equations in Linear Media . . . . . . . . . . Quantum vs. Classical Topological Classifjcation . Bulk-Edge Correspondence Da Capo Translating Real Symmetries to π > 0 Representation Moral of the Story Not all βquantumβ symmetries are symmetries of the classical equations βSchrΓΆdingerβ form of classical equations necessary to identify the nature of these symmetries in the context of TIs π· is not a meaningful symmetry of the βSchrΓΆdingerβ form of the classical equations! No fermionic time-reversal symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ideas apply to all classical wave equations! β Incompatible with the real-valuedness of classical waves
. . . . . . . . . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo . . . . . . . . . . . . . . . . . . . . . . . . Applies directly to vacuum Maxwell equations
. Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Bulk-Edge Correspondence . Da Capo Spin βΆ In Vacuo Maxwell Equations βΆ βΆ βΆ Same Strategy 1 Complexify classical equations 2 Eliminate superfmuous states in complex Hilbert space 3 . . . . . . . . . . . . . . . . . . . . . . . . . Identify complex implementation of the three symmetries . . . . Rot = βπ 2 β β Γ πΌ = π 0 π 2 π β π β 1,3 = π 1,3 1,3 = π 1,3 β π 2 = i π 2 2 = i π 2 β π π β π β
. 0 . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo SchrΓΆdinger Formalism of In Vacuo Maxwell Equations . Fundamental equation π πΌ (π’)) = ( 0 . ) (π πΉ (π’) π πΌ (π’)) Building blocks States: Ξ¨(π’) β π 2 (β 3 , β 6 ) Symmetries (+TR) (ordinary) (+TR) Classical Fundamental equation 0 0 Building blocks Symmetries . Complexifjcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ππ’ ( E (π’) + i β Γ ) ( E (π’) + i β Γ i π i π H (π’)) = ( β i β Γ H (π’)) β i β Γ ππ’ (π πΉ (π’) Hamiltonian: π = βπ 2 β β Γ = π β Hamiltonian: π = βπ 2 β β Γ States: ( E (π’) H (π’) ) β π 2 (β 3 , β 6 ) π β π β 1 = π 1 β π 1 = (π 1 β π) π· 2 = i π 2 β π 2 = i π 2 β π π β π β π β π β 3 = π 3 β π 3 = (π 3 β π) π·
. Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Bulk-Edge Correspondence . Da Capo SchrΓΆdinger Formalism of In Vacuo Maxwell Equations Representing real, transversal EM Fields as complex π > 0 waves β β β β β real wave Ξ¨(π’) β complex π > 0 wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( E (π’), H (π’)) = 2 Re βΉ Ξ¨ β β + = { complex π > 0 waves } .
. π πΌ (π’)) = ( . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo SchrΓΆdinger Formalism of In Vacuo Maxwell Equations . Fundamental equation 0 . 0 ) (π πΉ (π’) π πΌ (π’)) Building blocks Symmetries (+TR) (ordinary) (+TR) Classical Fundamental equation 0 0 Building blocks Symmetries . π > 0 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ππ’ ( E (π’) + i β Γ ) ( E (π’) + i β Γ i π i π H (π’)) = ( β i β Γ H (π’)) β i β Γ ππ’ (π πΉ (π’) Hamiltonian: π = βπ 2 β β Γ = π β Hamiltonian: π = βπ 2 β β Γ States: ( E (π’) H (π’) ) β π 2 (β 3 , β 6 ) States: Ξ¨(π’) β { compl. π > 0 waves } π β π β 1 = π 1 β π 1 = (π 1 β π) π· 2 = i π 2 β π 2 = i π 2 β π π β π β π β π β 3 = π 3 β π 3 = (π 3 β π) π·
. SchrΓΆdinger Formalism of In Vacuo Maxwell Equations . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Real Symmetry . Complex Representative TI Classifjcation Meaning +TR Flips helicity and arrow of time ordinary Dual symmetry +TR Ordinary EM time-reversal . . . . . . . . . . . . . . . . . Media selectively break or preserve these symmetries! . . . . . . . . . . . . . . π β π β 1 = π 1 β π 1 = (π 1 βπ) π· 2 = i π 2 β π 2 = i π 2 β π π β π β π β π β 3 = π 3 β π 3 = (π 3 βπ) π·
. 0 . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo SchrΓΆdinger Formalism of In Vacuo Maxwell Equations . Fundamental equation π πΌ (π’)) = ( 0 . ) (π πΉ (π’) π πΌ (π’)) Building blocks States: Ξ¨(π’) β { compl. π > 0 waves } Symmetries (+TR) (ordinary) (+TR) Classical Fundamental equation 0 0 Building blocks Symmetries . π > 0 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ππ’ ( E (π’) + i β Γ ) ( E (π’) + i β Γ i π i π H (π’)) = ( β i β Γ H (π’)) β i β Γ ππ’ (π πΉ (π’) Hamiltonian: π = βπ 2 β β Γ = π β Hamiltonian: π = βπ 2 β β Γ States: ( E (π’) H (π’) ) β π 2 (β 3 , β 6 ) π β π β 1 = π 1 β π 1 = (π 1 β π) π· 2 = i π 2 β π 2 = i π 2 β π π β π β π β π β 3 = π 3 β π 3 = (π 3 β π) π·
. Maxwellβs Equations in Linear Media . . . . . . . . . . Quantum vs. Classical Topological Classifjcation . Bulk-Edge Correspondence Da Capo 1 Quantum vs. Classical 2 Maxwellβs Equations in Linear Media 3 Topological Classifjcation of Electromagnetic Media 4 Obstacles For Proving the Photonic Bulk-Edge Correspondence 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Da Capo
. Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Bulk-Edge Correspondence . Da Capo Main Messages of This Talk 1 Rewrite Maxwellβs equations in the form of a SchrΓΆdinger equation. De Nittis & L., Annals of Physics 396 , pp. 221β260, 2018 2 Classify electromagnetic media using the Cartan-Altland-Zirnbauer scheme. De Nittis & L., arXiv:1710.08104, 2017; De Nittis & L., arXiv:1806.07783, 2018 3 Adapt existing techniques to prove bulk-boundary correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . β¦ in progress
. Da Capo . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Maxwellβs Equations in Linear, Dispersionless Media . π πΉπΌ π πΌπΉ 0) (dynamical) (ββ π πΉπΌ π πΌπΉ 0) (constraint) Constituent Parts Material weights phenomenologically describe properties of the medium . . . . . . . . . . . . . . . . . . . . . . . . . . Absence of sources . . . . ππ’ ( E (π’) H (π’)) = (+β Γ H (π’) π ) π ( π ββ Γ E (π’)) β (0 π ) ( E (π’) ββ ) ( π H (π’)) = (0
. Da Capo . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Maxwellβs Equations in Linear, Dispersionless Media . π πΉπΌ π πΌπΉ 0) (dynamical) (ββ π πΉπΌ π πΌπΉ 0) (constraint) Constituent Parts Material weights phenomenologically describe properties of the medium . . . . . . . . . . . . . . . . . . . . . . . . . . Absence of sources . . . . ππ’ ( E (π’) H (π’)) = (+β Γ H (π’) π ) π ( π ββ Γ E (π’)) β (0 π ) ( E (π’) ββ ) ( π H (π’)) = (0
. Da Capo . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Maxwellβs Equations in Linear, Dispersionless Media . π πΉπΌ π πΌπΉ 0) (dynamical) (ββ π πΉπΌ π πΌπΉ 0) (constraint) Constituent Parts Material weights phenomenologically describe properties of the medium . . . . . . . . . . . . . . . . . . . . . . . . . . Absence of sources . . . . ππ’ ( E (π’) H (π’)) = (+β Γ H (π’) π ) π ( π ββ Γ E (π’)) β (0 π ) ( E (π’) ββ ) ( π H (π’)) = (0
. π πΌπΉ . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Maxwellβs Equations in Linear, Dispersionless Media π πΉπΌ 0) . (dynamical) (ββ π πΉπΌ π πΌπΉ 0) (constraint) Abbreviations and Notation π(π¦) = ( π(π¦) π πΉπΌ (π¦) π πΌπΉ (π¦) 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ππ’ ( E (π’) H (π’)) = (+β Γ H (π’) π ) π ( π ββ Γ E (π’)) β (0 π ) ( E (π’) ββ ) ( π H (π’)) = (0 Multiply both sides of dynamical Maxwell equations by i π(π¦) ) + i β Γ Introduce Rot βΆ= ( ) and Div βΆ= ( ββ β i β Γ ββ )
. π πΌπΉ . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Maxwellβs Equations in Linear, Dispersionless Media π πΉπΌ 0) . (dynamical) (ββ π πΉπΌ π πΌπΉ 0) (constraint) Abbreviations and Notation π(π¦) = ( π(π¦) π πΉπΌ (π¦) π πΌπΉ (π¦) 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ππ’ ( E (π’) H (π’)) = (+ i β Γ H (π’) π ) i π ( π β i β Γ E (π’)) β (0 π ) ( E (π’) ββ ) ( π H (π’)) = (0 Multiply both sides of dynamical Maxwell equations by i π(π¦) ) + i β Γ Introduce Rot βΆ= ( ) and Div βΆ= ( ββ β i β Γ ββ )
. Da Capo . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Maxwellβs Equations in Linear, Dispersionless Media . 0) (dynamical) (ββ 0) (constraint) Abbreviations and Notation π(π¦) = ( π(π¦) π πΉπΌ (π¦) π πΌπΉ (π¦) 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ππ’ ( E (π’) H (π’)) = (+ i β Γ H (π’) π i π β i β Γ E (π’)) β (0 ββ ) π ( E (π’) H (π’)) = (0 Multiply both sides of dynamical Maxwell equations by i π(π¦) ) + i β Γ Introduce Rot βΆ= ( ) and Div βΆ= ( ββ β i β Γ ββ )
. Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Bulk-Edge Correspondence . Da Capo Maxwellβs Equations in Linear, Dispersionless Media (dynamical) (constraint) Abbreviations and Notation π(π¦) = ( π(π¦) π πΉπΌ (π¦) π πΌπΉ (π¦) 0 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ππ’ ( E (π’) H (π’) ) = Rot ( E (π’) π i π H (π’) ) Div π( E (π’) H (π’) ) = 0 Multiply both sides of dynamical Maxwell equations by i π(π¦) ) Introduce Rot βΆ= ( + i β Γ ) and Div βΆ= ( ββ β i β Γ ββ )
. Maxwellβs Equations in Linear Media . . . . . . . . . . Quantum vs. Classical Topological Classifjcation . Bulk-Edge Correspondence Da Capo Commonly Used, But Unphysical Maxwellβs Equations (dynamical) (constraint) Usually material weights are π β π complex! β e. g. gyrotropic media (QHE of Light!) Immediate Consequences Equations must be considered on subspaces complex Banach space π 2 (β 3 , β 6 ) Even if initial conditions are real, solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . ππ’ ( E (π’) H (π’) ) = Rot ( E (π’) π i π H (π’) ) Div π( E (π’) H (π’) ) = 0 ( E (π’) , H (π’)) β ( E (π’) , H (π’)) acquire imaginary part over time!
. Maxwellβs Equations in Linear Media . . . . . . . . . . Quantum vs. Classical Topological Classifjcation . Bulk-Edge Correspondence Da Capo Commonly Used, But Unphysical Maxwellβs Equations (dynamical) (constraint) Usually material weights are π β π complex! β e. g. gyrotropic media (QHE of Light!) Immediate Consequences Equations must be considered on subspaces complex Banach space π 2 (β 3 , β 6 ) Even if initial conditions are real, solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . ππ’ ( E (π’) H (π’) ) = Rot ( E (π’) π i π H (π’) ) Div π( E (π’) H (π’) ) = 0 ( E (π’) , H (π’)) β ( E (π’) , H (π’)) acquire imaginary part over time!
. Maxwellβs Equations in Linear Media . . . . . . . . . . Quantum vs. Classical Topological Classifjcation . Bulk-Edge Correspondence Da Capo Commonly Used, But Unphysical Maxwellβs Equations (dynamical) (constraint) Usually material weights are π β π complex! β e. g. gyrotropic media (QHE of Light!) Immediate Consequences Equations must be considered on subspaces complex Banach space π 2 (β 3 , β 6 ) Even if initial conditions are real, solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . ππ’ ( E (π’) H (π’) ) = Rot ( E (π’) π i π H (π’) ) Div π( E (π’) H (π’) ) = 0 ( E (π’) , H (π’)) β ( E (π’) , H (π’)) acquire imaginary part over time!
. Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Bulk-Edge Correspondence . Da Capo Commonly Used, But Unphysical Maxwellβs Equations (dynamical) (constraint) Usually material weights are π β π complex! Three Options 1 Take the real part of the complex wave 2 Give up on real-valuedness of electromagnetic fjelds. β Inconsistent interpretation (complex Lorentz force!?!) 3 . . . . . . . . . . . . . . . . Modify equations of motion. β Correct choice! . . . . . . . . . . . . . ππ’ ( E (π’) H (π’) ) = Rot ( E (π’) π i π H (π’) ) Div π( E (π’) H (π’) ) = 0 βΉ Breaks conservation of energy!
. Bulk-Edge Correspondence . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Da Capo . Commonly Used, But Unphysical Maxwellβs Equations (dynamical) (constraint) Usually material weights are π β π complex! Three Options 1 Take the real part of the complex wave βΉ Breaks conservation of energy! 2 Give up on real-valuedness of electromagnetic fjelds. β Inconsistent interpretation (complex Lorentz force!?!) 3 . . . . . . . . . . . . . . . . Modify equations of motion. β Correct choice! . . . . . . . . . . . . . . ππ’ ( E (π’) H (π’) ) = Rot ( E (π’) π i π H (π’) ) Div π( E (π’) H (π’) ) = 0
. Bulk-Edge Correspondence . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Da Capo . Commonly Used, But Unphysical Maxwellβs Equations (dynamical) (constraint) Usually material weights are π β π complex! Three Options 1 Take the real part of the complex wave βΉ Breaks conservation of energy! 2 Give up on real-valuedness of electromagnetic fjelds. β Inconsistent interpretation (complex Lorentz force!?!) 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ππ’ ( E (π’) H (π’) ) = Rot ( E (π’) π i π H (π’) ) Div π( E (π’) H (π’) ) = 0 Modify equations of motion. β Correct choice
. Quantum vs. Classical . . . . . . . . . . Maxwellβs Equations in Linear Media . Topological Classifjcation Bulk-Edge Correspondence Da Capo Maxwellβs Equations for Gyrotropic Media Real solutions linear combination of complex Β±π waves: Pair of equations ( derived from Maxwellβs equations for linear, dispersive media!) π > 0 βΆ π < 0 βΆ π(π’, π¦) = π(π’, π¦) βΊ . . . . . . . . . . . . . . . . . . . . . . . . . . . . π β (π¦) = π + (π¦) ( E , H ) = Ξ¨ + + Ξ¨ β = 2 Re Ξ¨ Β± {π + i π π’ Ξ¨ + = Rot Ξ¨ + Div π + Ξ¨ + = 0 {π β i π π’ Ξ¨ β = Rot Ξ¨ β Div π β Ξ¨ β = 0
. . . . . . . . . . . . Quantum vs. Classical . Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Maxwellβs Equations for Gyrotropic Media Real solutions linear combination of complex Β±π waves: Pair of equations ( derived from Maxwellβs equations for linear, dispersive media!) π > 0 βΆ π < 0 βΆ βΊ . . . . . . . . . . . . . . . . . . . . . . . . . . . π β (π¦) = π + (π¦) ( E , H ) = Ξ¨ + + Ξ¨ β = 2 Re Ξ¨ Β± {π + i π π’ Ξ¨ + = Rot Ξ¨ + Div π + Ξ¨ + = 0 {π + i π π’ Ξ¨ β = Rot Ξ¨ β Div π + Ξ¨ β = 0 π(π’, π¦) = π(π’, π¦)
. . . . . . . . . . . . Quantum vs. Classical . Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Maxwellβs Equations for Gyrotropic Media Real solutions linear combination of complex Β±π waves: Pair of equations ( derived from Maxwellβs equations for linear, dispersive media!) π > 0 βΆ π < 0 βΆ βΊ . . . . . . . . . . . . . . . . . . . . . . . . . . . π β (π¦) = π + (π¦) ( E , H ) = Ξ¨ + + Ξ¨ β = 2 Re Ξ¨ + {π + i π π’ Ξ¨ + = Rot Ξ¨ + Div π + Ξ¨ + = 0 {π β i π π’ Ξ¨ β = Rot Ξ¨ β Div π β Ξ¨ β = 0 π(π’, π¦) = π(π’, π¦)
. . . . . . . . . . . . Quantum vs. Classical . Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Maxwellβs Equations for Gyrotropic Media Physically Meaningful Equations π > 0 βΆ Compatibility with reality-condition baked in! Difgerence between physical and unphysical equations: defjned on difgerent subspaces of Banach space π 2 (β 3 , β 6 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . Real solutions ( E (π’) , H (π’)) = 2 Re Ξ¨ + (π’) where Ξ¨ + (π’) solves {π + i π π’ Ξ¨ + = Rot Ξ¨ + Div π + Ξ¨ + = 0 β + = { complex π > 0 states } β β β,β = ker ( Div π + )
. . . . . . . . . . . . Quantum vs. Classical . Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Maxwellβs Equations for Gyrotropic Media Physically Meaningful Equations π > 0 βΆ Compatibility with reality-condition baked in! Difgerence between physical and unphysical equations: defjned on difgerent subspaces of Banach space π 2 (β 3 , β 6 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . Real solutions ( E (π’) , H (π’)) = 2 Re Ξ¨ + (π’) where Ξ¨ + (π’) solves {π + i π π’ Ξ¨ + = Rot Ξ¨ + Div π + Ξ¨ + = 0 β + = { complex π > 0 states } β β β,β = ker ( Div π + )
. . . . . . . . . . . . Quantum vs. Classical . Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Maxwellβs Equations for Gyrotropic Media Physically Meaningful Equations π > 0 βΆ Compatibility with reality-condition baked in! Difgerence between physical and unphysical equations: defjned on difgerent subspaces of Banach space π 2 (β 3 , β 6 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . Real solutions ( E (π’) , H (π’)) = 2 Re Ξ¨ + (π’) where Ξ¨ + (π’) solves {π + i π π’ Ξ¨ + = Rot Ξ¨ + Div π + Ξ¨ + = 0 β + = { complex π > 0 states } β β β,β = ker ( Div π + )
. . . . . . . . . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo SchrΓΆdinger formalism for Maxwellβs . . . . . . . . . . . . . . . . . . . . . . . . equations in non-dispersive media
. Maxwellβs Equations in Linear Media . . . . . . . . . . Quantum vs. Classical Topological Classifjcation . Bulk-Edge Correspondence Da Capo Relevant Electromagnetic Media Assumption (Material weights) π(π¦) π(π¦) β π(π¦)) 1 The medium is lossless . 2 index medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . π + (π¦) = ( π(π¦) ( π β + = π + ) π + describes a positive ( 0 < π π β€ π + β€ π· π )
. β« . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo SchrΓΆdinger Formalism of Maxwellβs Equations Real transversal states (π π π πΌ ) = (+β Γ π πΉ ββ Γ π πΌ ) } . β¬ } β β· β§ { { β¨ { { β© Complex states with π > 0 β = {Ξ¨ β π 2 (β 3 , β 6 ) β£ Ξ¨ is π > 0 state } Energy scalar product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (De Nittis & L., Annals of Physics 396 , pp. 221β260, 2018) Theorem (De Nittis & L. (2018)) Ξ¨ = π + ( E , H ) ( E , H ) = 2 Re Ξ¨ π = π β1 Rot | π>0 = π β π π β π) π i π π’ Ξ¨ = πΞ¨ ππ’ (π πΉ β 3 d π¦ Ξ¦(π¦) β π(π¦)Ξ¨(π¦) β¨Ξ¦, Ξ¨β© π = β« (All subscripts + dropped to simplify notation.)
. Maxwellβs Equations in Linear Media . . . . . . . . . . Quantum vs. Classical Topological Classifjcation . Bulk-Edge Correspondence Da Capo 1 Quantum vs. Classical 2 Maxwellβs Equations in Linear Media 3 Topological Classifjcation of Electromagnetic Media 4 Obstacles For Proving the Photonic Bulk-Edge Correspondence 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Da Capo
. Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Bulk-Edge Correspondence . Da Capo Main Messages of This Talk 1 Rewrite Maxwellβs equations in the form of a SchrΓΆdinger equation. De Nittis & L., Annals of Physics 396 , pp. 221β260, 2018 2 Classify electromagnetic media using the Cartan-Altland-Zirnbauer scheme. De Nittis & L., arXiv:1710.08104, 2017; De Nittis & L., arXiv:1806.07783, 2018 3 Adapt existing techniques to prove bulk-boundary correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . β¦ in progress
. Symmetries of the In Vacuo Maxwell Equations . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo π > 0 βΆ . Real Symmetry Complex Representative TI Classifjcation Meaning +TR Flips helicity and arrow of time ordinary Dual symmetry +TR Ordinary EM . . . . . . . . . . . . . . . . . . . . . . . . . . time-reversal . . . . . { i π π’ Ξ¨ = Rot Ξ¨ Div Ξ¨ = 0 π β π β 1 = π 1 β π 1 = (π 1 βπ) π· 2 = i π 2 β π 2 = i π 2 β π π β π β π β π β 3 = π 3 β π 3 = (π 3 βπ) π·
. . . . . . . . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Media Breaking/Preserving Symmetries βΊ . . . . . . . . . . . . . . . . . . . . . . . . . {[ Rot , π β ] = 0 (vac. symm.) Medium has symmetry π β π β (anti)unitary on β
. . . . . . . . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Media Breaking/Preserving Symmetries βΊ . . . . . . . . . . . . . . . . . . . . . . . . . Medium has symmetry π β [π, π β ] = 0
. . . . . . . . . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo . . . . . . . . . . . . . . . . . . . . . . . . Photonic Crystals: Periodic Electromagnetic Media
. Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Bulk-Edge Correspondence . Da Capo Material vs. Crystallographic Symmetries Material π π β π) Properties of and relations between π , π and π 3 Crystallographic Wu & Hu (2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lu et al (2013) π = ( π a az Λ r a 2 a 1 π β 1 , π β 2 and π β o ax Λ ay Λ a 3
. Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Bulk-Edge Correspondence . Da Capo Material vs. Crystallographic Symmetries Material π π β π) Properties of and relations between π , π and π 3 Crystallographic Wu & Hu (2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lu et al (2013) π = ( π a az Λ r π β 1 , π β 2 and π β a 2 a 1 o ax Λ ay Λ a 3
. . . . . . . . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Topological Classifjcation of EM Media Assumption . . . . . . . . . . . . . . . . . . . . . . . . . π has no crystallographic symmetries.
. Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Bulk-Edge Correspondence . Da Capo Topological Classifjcation of EM Media Theorem (De Nittis & L. (2017)) Non-gyrotropic Dual-symmetric, non-gyrotr. π = ( π π Gyrotropic No symmetries Magneto-electric . . . . . . . . . . . . . . . . . . . . . . . . . ( De Nittis & L., arxiv:1710.08104 (2017)) . . . . π = ( π 0 0 π ) = ( π 0 π = ( π 0 0 π ) β ( π 0 0 π ) 0 π ) π β 3 = (π 3 β π) π· β i π β i π π = ( π π π π ) = ( π π + i π + i π π ) = ( π ) π π ) π β π β 1 = (π 1 β π) π· , π β 1 = (π 1 β π) π· 3 = (π 3 β π) π·
. Topological Classifjcation of EM Media . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Theorem (De Nittis & L. (2017)) . Non-gyrotropic Class AI Realized, e. g. dielectrics Dual-symmetric, non-gyrotr. Two +TR βΉ 2 Γ Class AI Realized, e. g. vacuum and YIG Gyrotropic Class A (Quantum Hall Class) Realized, e. g. YIG for microwaves Magneto-electric Class AI Realized, e. g. Tellegen media 4 difgerent topological classes of EM media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( De Nittis & L., arxiv:1710.08104 (2017))
. Topological Classifjcation of EM Media . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Theorem (De Nittis & L. (2017)) . Non-gyrotropic Class AI Realized, e. g. dielectrics Dual-symmetric, non-gyrotr. Two +TR βΉ 2 Γ Class AI Realized, e. g. vacuum and YIG Gyrotropic Class A (Quantum Hall Class) Realized, e. g. YIG for microwaves Magneto-electric Class AI Realized, e. g. Tellegen media Only one is topologically non-trivial in π β€ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( De Nittis & L., arxiv:1710.08104 (2017))
. . . . . . . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Conclusions from Topological Classifjcation Some works proposed to use unphysical symmetries Class AII cannot occur via material symmetries alone supported! Tight-binding operators cannot have incompatible . . . . . . . . . . . . . . . . . . . . . . . . . . symmetries! (e. g. fermionic time-reversal symmetries π f = (π 2 β π) π· ) β No β€ 2 -valued Kane-Mele-type topological invariants
. Maxwellβs Equations in Linear Media . . . . . . . . . . Quantum vs. Classical Topological Classifjcation . Bulk-Edge Correspondence Da Capo 1 Quantum vs. Classical 2 Maxwellβs Equations in Linear Media 3 Topological Classifjcation of Electromagnetic Media 4 Obstacles For Proving the Photonic Bulk-Edge Correspondence 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Da Capo
. Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Bulk-Edge Correspondence . Da Capo Main Messages of This Talk 1 Rewrite Maxwellβs equations in the form of a SchrΓΆdinger equation. De Nittis & L., Annals of Physics 396 , pp. 221β260, 2018 2 Classify electromagnetic media using the Cartan-Altland-Zirnbauer scheme. De Nittis & L., arXiv:1710.08104, 2017; De Nittis & L., arXiv:1806.07783, 2018 3 Adapt existing techniques to prove bulk-boundary correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . β¦ in progress
. . . . . . . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo Physical Setting Joannopoulos, SoljaΔiΔ et al (2009) Quasi-2d photonic crystal Topological photonic crystal of class A . . . . . . . . . . . . . . . . . . . . . . . . . . (i. e. π breaks π β 1 and π β 3 )
. . . . . . . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo A Physicistβs POV of the Bulk-Edge Correspondence Joannopoulos, SoljaΔiΔ et al (2009) 0 + 1 = 1 β 1 edge mode Skirlo et al, PRL 113, 113904, 2014 0 + 0 β 2 + 4 + 2 = 4 β 4 edge modes . . . . . . . . . . . . . . . . . . . . . . . . . . Works as advertised!
. Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Bulk-Edge Correspondence . Da Capo Haldaneβs Photonic Bulk-Edge Correspondence Conjecture Tasks 1 2 Defjne edge system ( β boundary conditions can break +TR symmetries!) 3 Proof of βmathematicalβ bulk-edge correspondence 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Identify the topological observable β Poynting vector? π bulk = π edge = net β― of edge modes Defjne topological bulk invariant π bulk
. Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Bulk-Edge Correspondence . Da Capo Haldaneβs Photonic Bulk-Edge Correspondence Conjecture Tasks 1 2 Defjne edge system ( β boundary conditions can break +TR symmetries!) 3 Proof of βmathematicalβ bulk-edge correspondence 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Identify the topological observable β Poynting vector? π bulk = π edge = net β― of edge modes Defjne topological bulk invariant π bulk
. Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Bulk-Edge Correspondence . Da Capo Haldaneβs Photonic Bulk-Edge Correspondence Conjecture Tasks 1 2 Defjne edge system ( β boundary conditions can break +TR symmetries!) 3 Proof of βmathematicalβ bulk-edge correspondence 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Identify the topological observable β Poynting vector? π bulk = π edge = net β― of edge modes Defjne topological bulk invariant π bulk
. Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Bulk-Edge Correspondence . Da Capo Haldaneβs Photonic Bulk-Edge Correspondence Conjecture Tasks 1 2 Defjne edge system ( β boundary conditions can break +TR symmetries!) 3 Proof of βmathematicalβ bulk-edge correspondence 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Identify the topological observable β Poynting vector? π bulk = π edge = net β― of edge modes Defjne topological bulk invariant π bulk
. Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Bulk-Edge Correspondence . Da Capo Haldaneβs Photonic Bulk-Edge Correspondence Conjecture Tasks 1 2 Defjne edge system ( β boundary conditions can break +TR symmetries!) 3 Proof of βmathematicalβ bulk-edge correspondence 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Identify the topological observable β Poynting vector? π bulk = π edge = net β― of edge modes Defjne topological bulk invariant π bulk
. Topological Classifjcation . . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Bulk-Edge Correspondence . Da Capo Haldaneβs Photonic Bulk-Edge Correspondence Conjecture Tasks 1 2 Defjne edge system ( β boundary conditions can break +TR symmetries!) 3 Proof of βmathematicalβ bulk-edge correspondence 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Identify the topological observable β Poynting vector? π bulk = π edge = net β― of edge modes Defjne topological bulk invariant π bulk
. . . . . . . . . . . . Quantum vs. Classical . Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence Da Capo The Frequency Band Picture Theorem (De Nittis & L., 2014) 1 Bloch bands and functions locally analytic away from crossings 2 2 ground state bands with β linear dispersion at π = 0 and π = 0 3 . . . . . . . . . . . . . . . (Theorem 1.4 and Lemma 3.7 in De Nittis & L., Documenta Math. 19 , pp. 63β101, 2014) . . . . . . . . . . . . w A + n 4 n 3 B + n 2 n 1 k -p p n 1 B A π gs (π) discontinuous at π = 0 (jump in dimensionality!)
. Da Capo . . . . . . . . Quantum vs. Classical Maxwellβs Equations in Linear Media Topological Classifjcation Bulk-Edge Correspondence The Bloch Vector Bundle . Proceed as Usual 1 Select bulk frequency band gap. 2 Defjne the βFermi projectionβ π(π) βΆ= β π 3 Defjne the Bloch bundle β° π β (π) βΆ β¨ πβπ β π βΆ π β . . . . . . . . . . . . . . . . In Bloch-Floquet representation. . . . . . . . . . . . . . . w A + n 4 n 3 B + n 2 n 1 k -p p n 1 B π=1 |π π (π)β©β¨π π (π)| . A ran π(π)
Recommend
More recommend